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The bidirectional reflectance distribution function (BRDF) gives the reflectance of a target as a func-
tion of illumination geometry and viewing geometry, hence carries information about the anisotropy of
the surface. BRDF is needed in remote sensing for the correction of view and illumination angle effects
(for example in image standardization and mosaicing), for deriving albedo, for land cover classification,
for cloud detection, for atmospheric correction, and other applications. However, current spaceborne
instruments provide sparse angular sampling of BRDF and airborne instruments are limited in the spatial
and temporal coverage. To fill the gaps in angular coverage within spatial, spectral and temporal require-
ments, we propose a new measurement technique: use of small satellites in formation flight, each satellite
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Formation
BRDF with a VNIR (visible and near infrared) imaging spectrometer, to make multi-spectral, near-simultaneous
OSSE measurements of every ground spot in the swath at multiple angles. This paper describes an observing

system simulation experiment (OSSE) to evaluate the proposed concept and select the optimal forma-
tion architecture that minimizes BRDF uncertainties. The variables of the OSSE are identified; number of
satellites, measurement spread in the view zenith and relative azimuth with respect to solar plane, solar
zenith angle, BRDF models and wavelength of reflection. Analyzing the sensitivity of BRDF estimation
errors to the variables allow simplification of the OSSE, to enable its use to rapidly evaluate formation
architectures. A 6-satellite formation is shown to produce lower BRDF estimation errors, purely in terms
of angular sampling as evaluated by the OSSE, than a single spacecraft with 9 forward-aft sensors. We
demonstrate the ability to use OSSEs to design small satellite formations as complements to flagship mis-
sion data. The formations can fill angular sampling gaps and enable better BRDF products than currently
possible.

© 2015 Published by Elsevier B.V.

1. Introduction 1995). Total Outgoing Radiation (TOR) is estimated at 0.9 W/m? by

current climate models—with uncertainties of —2 to +7 W/m? (Loeb

Multi-angular remote sensing, or sensing of the same target at
multiple angles, is very important for obtaining various science
products such as albedo, for land cover classification, for cloud
detection, and for atmospheric correction (Gatebe et al., 2003).
Sparse angular sampling of the reflected light can cause errors
between 15% and 90% in the reflectance products of moderate res-
olution, solar wavelength remote sensing (Esper et al., 2000; Nag,
2015). Up to 90% of the errors in the computation of radiative forc-
ing, a key assessor of climate change, is attributed to the lack of
detailed description of reflected solar flux (Wielicki and Harrison,
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et al., 2009), reduced only by frequent, global, angular radiance
measurements (Dyrud et al., 2014). Snow albedo when estimated
using only nadir reflectance shows up to 45-50% errors compared
to hemispherical reflectance (Arnold et al., 2002). Current Gross Pri-
mary Productivity (GPP) estimates show uncertainties up to 40%
in the terrestrial carbon uptake (Hilker et al., 2011). Vegetation
analysis is adversely affected by under-sampling on the princi-
pal plane and hotspots (Roman et al., 2011). GPP and vegetation
reflectance quantifies the extent to which forests and vegetation
act as a sink for atmospheric carbon dioxide and is very important
to estimate carbon feedbacks of vegetation in response to global
climate change (Canadell et al., 2007). Deforestation and forest
degradation accounts for 12% of anthropogenic carbon emissions,
which have nearly doubled in the past 30 years (Van der Werf
et al., 2009). Recent studies have also shown an overestimation
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of the greening of Amazon forests during the dry season due to
seasonal artifacts in MODIS’ sun-sensor geometry (Morton et al.,
2014). Using denser, space-based angular sampling from the CHRIS
instrument (Barducci et al., 2005) reduces GPP uncertainties to 10%
(Hall et al., 2008), showing a 75% improvement in carbon cycle
calculations. The above shortcomings will not disappear but can
be significantly improved by better angular sampling of the BRDF
function.

This paper proposes a new measurement solution for multi-
angular remote sensing and details the observing system
simulation experiment (OSSE) designed to optimize the solution,
with the goal of selecting a few optimal mission designs. The mea-
surement solution is intended to complement current flagship and
Decadal Survey missions, by alleviating some sampling require-
ments that could cause creeps. The Earth Science Decadal Survey
asked for “Synergies of complementary measurements...cost-effective
replacement of individual sensors... moving away from a single
parameter and sensor-centric approach toward a systems approach
that ties observations together to study processes important to under-
standing Earth-system feedbacks” when proposing 15 instruments
for the next decade (National Academy of Sciences, 2007). Seven
years later, only 3 of those are in formulation, causing the Survey’s
mid-term assessment to stress on complementary solutions like
hosted payloads and formation flight (National Research Council,
2012). The proposed solution in this paper seeks to do the same, by
identifying a quantifiable gap in Earth remote sensing and address-
ing it using small satellite formations.

The presented OSSE is a subset of a larger evaluation framework,
which generates and evaluates the engineering design tradespace
of solutions. The models within the OSSE have been carefully eval-
uated in the context of space-based measurements by formations
and the surface types expected to be sampled over time. Reference
data are designated from a combination of airborne and space-
borne data collected during NASA campaigns and validated using
radiative transfer models. The design, nature and validation of the
OSSE are indispensable to the selection of the optimal measure-
ment solution owing to the complexity of distributed missions.
A baseline design has been proposed in the case study, and its
multi-angular advantages to other candidate designs and over a
monolithic counterpart demonstrated using the developed OSSE.

1.1. Why Bi-directional reflectance?

The bidirectional reflectance distribution function (BRDF) gives
the reflectance of a target as a function of illumination geome-
try and viewing geometry, hence carries information about the
anisotropy of the surface (Gatebe et al., 2003). BRDF itself, as a
ratio of infinitesimals, is a derivative with instantaneous values of
reflected radiance and solar illumination (Nicodemus et al., 1977).
BRDF is influenced by intrinsic properties of the reflecting surface
that can be measured within the surface itself without any refer-
ence to a larger space. While it can never be measured directly, real
measurements can involve non-zero intervals of above parameters.
It depends on four major angles—the solar zenith angle or SZA,
solar azimuth angle, view zenith angle or VZA and view azimuth
angle—as well as on the wavelength of light (Gatebe et al., 2003).
The azimuth angles are added to provide one azimuth angle rela-
tive to the solar position called the relative azimuth angle or RAA.
Estimating BRDF (Barnsley et al., 1994 ) requires radiance measure-
ments across a large angular spread, with spectral range over the
visible and near infrared (VNIR) solar spectrum and with spatial
resolution that is appropriate for sampling BRDF of surface types
of interest. Frequent temporal measurements can allow monitor-
ing of regions of interest, and allow global coverage. To name a
few applications, BRDF is used for the derivation of surface albedo
(Lyapustin et al., 2010), calculation of radiative forcing (Liang,

2008), land cover classification (Privette et al., 1997), gross pri-
mary productivity (Hilker et al., 2008), cloud detection (Esper et al.,
2000), surface roughness measurements of vegetation, snow or ice
(Gatebe et al., 2003; Chopping, 2008), canopy structure (Chopping,
2008; Chopping et al., 2008), atmospheric corrections, and aerosol
optical properties (Gatebe et al., 2003).

1.2. Gaps in current measurements

Current measurement techniques are inadequate for estimating
global BRDF. Spacecraft instruments approximate BRDF by mak-
ing multi-angular measurements owing to their large cross-track
swath (e.g. Moderate Resolution Imaging Spectroradiometer-
MODIS (Xiong et al, 2011), now retired Polarization and
Directionality of the Earth’s Reflectances-POLDER (Deschamps
et al., 1994), Clouds and Earth’s Radiant Energy System-CERES
(Wielicki et al., 1996), multiple forward and aft sensors (e.g. Multi-
angle Imaging SpectroRadiometer-MISR (Diner et al., 1998), Along
Track Scanning Radiometer-ATSR (Godsalve, 1995), Advanced
Spaceborne Thermal Emission and Reflection Radiometer-ASTER
(Abrams, 2000), or autonomous maneuverability to point at
pre-programmed ground targets (e.g. Compact High Resolution
Imaging Spectrometer -CHRIS (Barducci et al., 2005).

Since angular sampling requires simultaneous reflectance mea-
surements at multiple angles for a given ground footprint, one
satellite is insufficient for accurate characterization. A single large,
complex satellite (monolith), especially a forward-aft or cross-track
sensors in sun synchronous orbits (SSO) such as MISR or MODIS,
can make measurements only along a restrictive plane with respect
to the solar phase because SSOs have nearly constant beta angles
and local crossing times. Angular reflectance acquisition by mono-
liths typically combines measurements along-track if they have
forward-aft sensors (Fig. 1-left) or cross-crack if they have a large
swath (Fig. 1-right). Measurements made by cross-track sensors
are separated in time by more than a week (e.g. MODIS, CERES).
In areas of fast changing surface/cloud conditions especially during
the melt season/tropical storms, a few days can make a big differ-
ence in reflectance. The three shown look angles in Fig. 1 are only
examples. In reality, many such measurements are combined.

Spaceborne instruments that provide good angular sampling
compromise in other sampling characteristics. Table 1 compares
seven spaceborne instruments with BRDF-dependent products in
terms of angular sampling (Col #1), spatial resolution (Col #2), tem-
poral resolution (Col #3) and spectral range and resolution (Col #4
and #5). The number of angles indicate near simultaneous angu-
lar measurements of the same ground spot and RGT is the repeat
ground track period. Since our proposed measurement solution is
expected to make near-simultaneous angular measurements, the
time of acquisition in Table 1 is restricted to a few minutes to make
a fair comparison. POLDER, MISR and CHRIS provide many angu-
lar measurements, but POLDER has very coarse ground resolution,
CHRIS has no target repeatability for temporal monitoring of sur-
face types and MISR is restricted to only four bands in VNIR and to
near-constant solar phase. MODIS and CERES are cross-track sen-
sors so they get only one view at one angle every orbit, of the same
ground spot. ATSR and ASTER, with their double cameras, are able
to scale this up to two angles every orbit. However, their long repeat
period and narrow swath, respectively, limit how quickly they can
accumulate good sampling.

Airborne instruments can provide dense angular, spectral sam-
pling at fine spatial resolution but it is very expensive to make
frequent, repeated measurements globally. NASA GSFC’s heritage
airborne BRDF instrument, the Cloud Absorption Radiometer (CAR)
(King et al., 1986), has 14 channels and can make up to 114.600
directional measurements of radiance per channel per aircraft cir-
cle at a spatial resolution of 10-270 m (Gatebe et al., 2003). CAR’s
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Fig. 1. Measurements a single satellite is capable of making over time, in blue, versus instantaneous angular sampling required for BRDF estimation, in red. ‘T", ranging over
a few minutes for forward-aft sensors in the left panel or over a couple of weeks for cross-track sensors in the right panel, represents nominal time differences that a LEO
satellite takes to make the given blue measurements.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.).

Table 1

Comparison of current spaceborne instruments with BRDF products (rows) in terms of BRDF measurement metrics (columns). Red highlights indicate sparse measurements for
BRDF estimation. The instrument acronyms have been defined in the text. The superscripted numbers indicate cross-track (1), along-track (2) and autonomously manoeuvred

(3) viewing geometry.

Science metrics — | Current instruments ~ Number of angles

Ground pixel size in km X km

Revist time (any view) in days  Spectral range  # of spectral bands

1MODIS 1 0.25to1
1POLDER 12 6x7

1CERES 1 10to 20
2MISR 9 0.275to 1.1
2ATSR 2 1to2
2ASTER 2 0.015 to 0.09
3CHRIS 5-15 0.017 to 0.5

~2(16 day RGT) 0.4-14.4 pm 36
~2(16 day RGT) 0.42-0.9 pm 9
~2(16 day RGT) 0.3-12 pwm 3
9(16 day RGT) 0.44-0.87um 4

3-4 0.55-12 pm 7
~2(16 day RGT) 0.52-11.65um 14

As per command 0.415-1.05pm  18-63

estimated BRDF can improve the local surface albedo errors by
15-20% when compared to MODIS-derived BRDF (Gatebe et al.,
2014). However, it loses out on global coverage that MODIS offers
because CAR campaigns are local and observations usually span
several weeks during a field campaign.

Given the importance of BRDF and its science products (Canadell
et al.,, 2007), it is important to design and develop an alternative
observational system that combines the local accuracy of airborne
instruments with the global coverage and frequent and repeated
measurements of spaceborne instruments. Based on the CAR
instrument BRDF angular sampling strategy (National Research
Council, 2012; Yost, 2013), which is assumed here as a golden
standard and MISR’s angular spread, we attempt to determine an
optimum angular spread for a global BRDF sampling using small
satellites. MISR is chosen as the monolithic reference because of its
best angular performance in Table 1, while being global with mod-
erate spatial resolution. Spatial requirements can be set at 350 m
at 865 nm, as compared to MISR’s 275 m. These tentative require-
ments are shown to be achievable using small satellite technology
within signal-to-noise ratio of 50 (Nag, 2015; Nag et al., 2013).

1.3. Proposed measurement solution

Previous literature has proposed the use of a satellite formation
to complement the deficiency of a monolithic system for multi-
angular measurements and BRDF estimation (King et al., 1986;
Gatebe et al., 2014; Nag, 2015). A formation or cluster is defined as
a satellite constellation where the satellites have a specific spatial
or angular arrangement among themselves, and are continuously
able to “see” each other. The formation would have small satel-
lites (10-20 kg) in repeating-ground-track formation flight carrying
spectrometer payloads to make multi-spectral measurements over
a ground spot, at multiple angles at the same time (Fig. 2). One

Fig. 2. A satellite formation making multi-angular, multi-spectral measurements
by pointing its spectrometers at the same ground spot, as it orbits the Earth (not to
scale).

satellite would point nadir, while the others would point their pay-
load toward the ground spot of the nadir-pointing satellite. Many
small satellites can be deployed with the same resources required
for a single current large monolith. The 6U to 12U CubeSat stan-
dards can be used as the bus and NASA’s ELANA Program for launch
opportunities (Skrobot and Coelho, 2012). For adequate spatial and
spectral sampling, small VNIR imaging spectrometers can be con-
figured for snapshot imaging to maximize ground spot overlap (Nag
et al.,, 2013). Baseline formation designs have been shown to be
feasible within currently available technologies (Nag, 2015).

A simplified but reliable OSSE is needed to map the generated
engineering designs with BRDF estimation improvement, so that
designs that optimize performance and cost can be selected. Such
a small satellite formation cannot outperform monoliths in all the
metrics in Table 1, due to the constraints of its size, mass and avail-
able technology. For example, small satellites are currently far less
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Fig.3. Tradespace analysis tool overview. OSSE-based science evaluation (right box)
is tightly coupled to the traditional MBSE module (left box).

optimal in radiometric accuracy or image stability than the current
monolithic flagship missions. However, we argue that their value
lies not in competition but in being able to provide complementary
data that when used with flagship mission can produce BRDF or
other dependent Earth science products that would be impossible
otherwise.

2. Observing system simulation approach

An architecture is defined as a unique combination of design
variables such as number of satellites, their orbit parameters,
spectrometer payload’s field of view, imaging mode, etc. The
methodology employed to assess the optimal architectures and
validate their BRDF estimation capabilities couples Model-Based
Systems Engineering (MBSE) with Observing System Simulation
Experiments (OSSE) (Nag, 2015; Nag et al., 2014). A tradespace
of architectures can be analyzed by varying the design variables
in the MBSE model and assessing its effect on data assimilation
and science products using OSSEs, as shown in Fig. 3. The left
hand box generates architectures (Nag et al., 2013, 2015a), sizes
them to check their feasibility and costs them in keeping with the
MBSE approach. The model can be simulated over any time hori-
zon, divided into appropriate time steps. The focus of this paper is
the right hand box, which evaluates science performance.

The method to build a reliable OSSE has been developed
based on literature on OSSEs through their historical development
(Arnold and Dey, 1986) and for CLARREO (Feldman et al., 2011),
HyspIRI (Turmon et al., 2010) and the Hydros Radiometer (Crow
et al., 2005). Section 3 details the data and models used in the OSSE
for BRDF estimation and Section 4 analyses the sensitivity of perfor-
mance with respect to key variables in BRDF estimation. OSSEs are
extremely expensive computationally (Feldman et al., 2011). Sen-
sitivity studies allow us to streamline our OSSE variable space so
that a simplified OSSE can be used for rapid architecture studies in
a mission’s pre-Phase A instead of the traditional, complex, instru-
ment validation. All models described in this paper have been built
on MATLAB 2014a or AGI's Satellite Tool Kit' (STK). Orbits are sim-
ulated and propagated on STK’s High Precision Propagator (HPOP),
its inputs customized for rapid architecture generation and outputs
customized for angular analysis and feed-forward into the OSSE
(Nag et al., 2015a). Section 4 shows the performance-cost trades
of hundreds of architectures of formations using the streamlined
OSSE to calculate performance, in conjunction with parallel litera-
ture to generate architectures (Nag et al., 2015a) and calculate costs
(Nag, 2015).

! Analytical Graphics Inc. website and products: http://www.agi.com/products/
stk/.

The science evaluation model (Fig. 4) is driven by observing
system simulation experiments or OSSEs. Inputs to the model are
the solar zenith angle (SZA), view zenith angle (VZA) and rela-
tive azimuth angle (RAA) of all satellites in a formation at any
given instant of time, which comes from the systems engineering
model, and the surface of interest, which is an external require-
ment. The reference BRDF data used in the model (Box1 in Fig. 4)
are reflectance measurements made by the CAR at every degree of
VZA and RAA for seven representative surface types. The surface
type under the satellite looking nadir is identified using the satel-
lite’s position and attitude from the systems engineering model and
a MODIS database of globally gridded surface types.”? While BRDF
is known to vary within the same surface type, we assume that the
variance of gross features or patterns is less than that between the
seven surface types. Availability of more intricate global maps of
terrains and dense angular reflectance data at those terrains can be
used to refine the reference data and improve the OSSE’s accuracy.

A sample of this Reference BRDF (Box3) corresponding to what
each satellite senses and depending on its position and attitude
at every time step (Box2 from MBSE output), is used as data to
invert a BRDF model (Box4) and estimate the model parameters.
These parameters are then used to run the forward model and
calculate reflectance at every degree of VZA and RAA, given an
SZA (Box6). The difference between this estimated reflectance and
the reference CAR reflectance is called the BRDF; and is repre-
sented as a Root Mean Square value (RMS). BRDF can then be used
to calculate albedo, GPP or any other BRDF-dependent product
(Nag,2015). The difference between these products calculated from
the CAR reflectance values versus the forward model estimated
reflectance values form the App Error. These errors at any time step
are the outputs from the science performance evaluation model and
determine the goodness of the input formation design and corre-
sponding angular spread. The error over time for a full tradespace
of formation architectures is used as a science metric to judge the
performance of the cluster. These errors can be traded against the
cost of increasing the number/size of satellites and complexity of
the formation for making value-centric decisions in engineering
design. Alternative performance metrics that may be used in the
OSSE are noise amplification factors (WOD, weight of determina-
tion) which quantifies the uncertainty in retrieved parameters such
as nadir-view reflectance, albedo at various solar zenith angles or
BRDF model parameters (Lucht and Lewis, 2000).

2.1. Reference BRDF data

Airborne or tower data of multi-angular reflectance serve as ref-
erence reflectance data for the science evaluation model. For some
OSSEs such as those for estimating total outgoing radiation globally,
exhaustive measurements are not available hence, radiative trans-
fer model simulations are used to fill up the gaps. As mentioned
before, local BRDF data from CAR’s airborne campaigns on plat-
forms such as NASA P-3B is used as reference (Gatebe et al., 2003).
The CAR is designed to have a zenith to nadir scan range of 190°.
By flying it around a ground spot in circles and at different heights,
radiance measurements are obtained at every degree of zenith and
azimuth angle to provide a very dense angular sampling of BRDF
(Gatebe et al., 2003). By repeating measurements at different times
of the day, reflectance at different solar zenith angles may also be
available.

CAR data for all seven major surface types are available. Fig. 5
shows the global distribution of the surface types, as extracted from

2 Global Land Cover Facility Website (GLCF): http://glcf.umd.edu/data/lc/. Data
extracted by and used with permission from Gong Zhang at NASA Ames Research
Center.
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Fig. 5. Typical BRDF,at representative wavelengths (see text for values), of the major BRDF surface types, geographically sorted using the MODIS land cover type. The white

gaps indicate deserts.

the Global Land Cover Facility (GLCF) which draws from MODIS
data. The grid points are 5° apart at the equator and distance-
adjusted for higher latitudes. For each surface type, the inset polar
plots show the reflectance normalized at the top of the atmosphere
as a function of measurement zenith (plot radius) and azimuth with
respect to the Sun (polar azimuth). Both the shape and the intensity
values of these plots are very different, indicating the importance

of local but angular data collection as well as global and temporal
assessment of this data.

NASA CLAMS campaign (2001) data from Virginia Beach has
been used as water BRDF reference data (Gatebe et al., 2005). The
inset in Fig. 5 shows the data at SZA=20°. Three other data sets at
SZA=16°, 30° and 44° have been shown in more detail in Fig. 4.
Quite obviously, water BRDF is characterized by a reflectance peak
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Fig. 6. BRDF sample of water as collected off Virginia Beach by the CAR instrument during NASA’s CLAMS campaign, 2001. Reflectance at solar zenith angle of 16°, 30° and
44 (left to right) is shown. The radial striations for all the data plots are 10° in view zenith angle (VZA).

for the sun glint or specular reflectance when view zenith and solar
zenith angles as well as both azimuths (RAA=0) are equal. While
angular reflectance around the sun glint can provide valuable infor-
mation about wind speeds and aerosols, the regions far from the
sun glint are very important for the ocean color community (Gatebe
etal., 2005). Satellite formations can be optimally arranged to mea-
sure or avoid the sun glint depending on the application of interest.
Reflectance at 472 nm has been plotted and used, because the blue
band (among CAR’s 8 available bands) shows the ocean anisotropy
more clearly and can be used successfully for ocean color retrievals
(Gatebe et al., 2005).

Data collected during the SAFARI campaign (2000) in south-
ern Africa is used for Savannah vegetation (Gatebe et al., 2003).
The savannah is characterized by a distinct backscattering peak
in the principal plane (RAA=180°) called the hot spot, around the
angular point where SZA = MZA. The hotspot region is very useful
quantifying photosynthetic productivity. The inset in Fig. 5 shows
the data collected over Skukuza, South Africa, at SZA =28° (Gatebe
et al,, 2003) and expanded in Fig. 7. Savannah data at SZA=67°,
as collected from Maun in Botswana, shows the re-positioning of
the hotspot as SZA changes (Gatebe et al., 2003). Both plots show
reflectance at the red band (682 nm). In the absence of the green
band in CAR, the redband’s BRDF is used as reference because it cor-
relates very strongly with green band BRDF obtained from tower
measurements (Nag, 2015) and captures savannah anisotropy well.

Snow measurements are obtained from the ARCTAS campaign
(2008) (Lyapustin et al., 2010), in Alaska. Fig. 7 (rightmost) shows
the BRDF pattern at the near infrared band of 1036 nm, the chosen
band for snow because of its minimal obstruction due to cloud cover
and aerosols. The SZA is 66° and the specular reflectance direction
shows the distinct sun glint, which is characteristic of snow, how-
ever much more diffused than the one seen over water. The BRDF
patterns over forests and croplands (Fig. 3) are very similar to the
ones over savannah. The insets show the BRDF pattern at 870 nm
for forests, collected during the Eco3D campaign out of NASA Wal-
lops Flight Facility, Virginia in 2011, and for croplands, collected
during the CLASIC Campaign out of Ponca City, Oklahoma in 2007.
The band was chosen because the surface anisotropy was observed
to be the most pronounced among the NIR bands and need to be
captured by the formation flight solution. Desert surfaces are often
characterized by predominant forward scattering, but the reflec-
tion function is very smooth elsewhere as shown in (Soulen et al.,
2000). The hemispheric albedo of the desert is less than 13% com-
pared to the nadir albedo in contrast to 45-50% difference observed
for snow (Arnold et al., 2002). The angular sampling requirements
are thus less stringent for deserts compared to the other surface
types defined in this study.

The satellite positions over every timestep from the systems
engineering model inform which surface type lies under the nadir-

pointing satellite of the formation, and the appropriate reference
datais used in the OSSE. The global grid sampling is coarser than the
spectrometer ground spot, hence, only one surface type per time
step is processed. The position of the monolithic spacecraft such
as TERRA or PARASOL is obtained from their Two Line Elements
(TLE) database within AGI STK. Exact orbital states for formations
of individual satellites can be used to determine angular spread
(Nag et al, 2015a), which is then evaluated in the OSSE. Note that
the radial striations for all the data plots (Fig. 6 through Fig. 11) are
10° in VZA.

2.2. BRDF models

BRDF models are used to estimate reflectance values at all com-
binations of view zenith, solar zenith and relative azimuth angle as
a function of those angles and various parameters. These models
may be classified in a number of ways (Shell, 2004), such as those
based upon the treatment of the optics and others being physi-
cal or empirical. Physical models rely upon first-principle physics
of electromagnetic energy and material interactions, and require
inputs such as surface roughness parameters and the complex
index of refraction. Empirical models rely solely upon measured
BRDF values, while semi-empirical models incorporate some mea-
sured data, but may have significant elements of physics-based
principles. For this study, semi-empirical models will be used to
model BRDF as a function of 4 angles and wavelength. The most
popular models for BRDF estimation are the Ross-Thick Li-Sparse
(RTLS) model (Wanner et al., 1995; Roman et al., 2012; Roman
etal., 2011), Rahman-Pinty- Verstraete (RPV) model (Rahman et al.,
1993; Martonchik et al., 1998), modified RPV to remove the non-
linear terms in the RPV model and Cox-Munk model (CM) (Cox and
Munk, 1954; Gatebe et al., 2005). RPV models have been applied
for BRDF retrievals using MISR data, RTLS for MODIS data and CM
for directional ocean reflectance (Gatebe et al., 2005).

The RTLS model is the most linear of the three. It is a linear sum
of 3 kernels, dependent on the 3 BRDF angles, and a simple inver-
sion of 3 parameters is required. The RPV formulation splits a BRF
field into a scalar amplitude component and the associated angu-
lar field describing the anisotropy of the surface. The RPV model
can be linearized by modeling BRDF in its logarithmic form and the
linear equation (called modified RPV or MRPV) then reduces to a
weighted sum of 3 kernels. Cox-Munk model is the most non-linear
among the mentioned 3 models and simulates the reflectance of the
wind-ruffled ocean surface outside the glitter. In our formulation,
the parameters for non-linear inversion are wind speed (v), aerosol
optical depth (70) and the path radiances. The latter is dependent
on the first two variables through the full radiative transfer model,
but will be assumed constant in this paper (Gatebe et al., 2005).
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Fig. 7. NIR BRDF sample of savannah (left, middle) as collected over Maun, Botswana (left) and Skukuza, South Africa (middle) by the CAR instrument during NASA’s SAFARI
campaign, 2000. Reflectance shown is at solar zenith angle 28° and 67° respectively. NIR BRDF sample of snow (right) over Alaska during the ARCTAS campaign in 2008 is

shown for solar zenith angle 66°.
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Fig. 8. Correlation at p value <0.05 among data collected by CAR at 8 different wavebands, taken two at a time, for 4 of the 7 major surface type.

2.3. Optimization methods for angular sampling

Heuristic optimization is used to find the optimal measurement
spread in the VZA-RAA plane for a given satellite number and CAR
data set (per surface type). These optimal spreads are practically
not precisely possible to achieve or maintain because any mea-
surement configuration in space is constrained by possible orbits
and dynamically changes as the satellites move relative to each
other. However, these optimal spreads can inform us of what the
ideal measurement should be. BRDF estimation dependence on SZA
(decoupled due to reference data constraints) and satellite number
will be analyzed in the subsequent sections.

Our approach is to optimize the position of N points on the polar
plot of BRDF data (constant SZA), i.e. Box 3 in Fig. 4, such that BRDF

error is minimized, i.e. green box in Fig. 4. N points correspond to
the measurements taken by a formation of N satellites. The problem
is very nonlinear because the objective function - BRDF error -
depends non-linearly on the variable space — N-fold VZA, N-fold
RAA, both for RTLS and CM models. The CM models are even more
complex because their inversion process is non-linear as well.
MATLAB-based simulated annealing (SA) was selected as the
algorithm of choice after testing the available options (De Weck
et al.,, 2008) on the snow data set with N=5 measurements (Nag,
2015). Gradient search algorithms or other local methods fail to
optimize the space. Pattern search optimization, local but applica-
ble to functions that are not continuous or differentiable, converges
to an acceptable but non-optimal solution. Evolutionary algorithms
perform equally well in the task, however with differing speeds and
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Fig. 9. Histograms of BRDF RMS errors (X-axis) over 100 Monte Carlo runs for four different land surface types when using the (a) RTLS or (b) modified RPV model as the
model of choice in Box 4 of Fig. 4. The X-axis has not been normalized to the same scale because the data is not as well visualized due to the difference in absolute values of

error among different surfaces.

Fig. 10. Forward modelled hemispheric reflectance using inverted parameters from the [left] MRPV model on savannah data at SZA =28, [middle] RTLS model on savannah
data at SZA=28°, [right] RTLS model on snow data at SZA=66°. Compare to reference data in Fig. 7-left and right.
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Fig. 11. Forward modelled hemispheric reflectance of water with the Cox-Munk model [Left] using inverted parameters when the model is fit to water BRDF data at SZA =30°;
[Right] using wind speed of 5m/s and no sky radiance or aerosol depth. Compare to reference data in Fig. 6-middle.

efficiency (Nag, 2015). Genetic algorithms does equally well as sim-
ulated annealing but takes 4 times more time. Swarm optimization
performed as well and as efficiently as SA, and could also be used.
Unlike gradient-based methods in a convex design space, heuris-
tics are not guaranteed to find the true global optimal solution in a

single objective problem, but should find many good solutions (De
Wecketal.,2008). Since we are trying to look for better spreads than
those provided by monoliths in a global space, heuristics is our best
alternative since they are good at dealing with local optima without
getting stuck while searching for the global optimum.
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3. Results of BRDF dependence on key variables

We found that BRDF estimation is a complex problem that
depends on many variables—wavelength, number of measure-
ments, VZA, RAA and SZA spread of the measurements. To simplify
the OSSE as much as possible for rapid architecture evaluation,
BRDF estimation sensitivity with respect these variables are ana-
lyzed in the context of the OSSE, data and models introduced in
Section 2. The analysis has been performed per surface type from
Fig. 5 because of their geographical knowledge and the availability
of BRDF data. While we recognize that BRDF is influenced by intrin-
sic properties of the reflecting surface, we assume that CAR BRDF
for each surface is representative of the anisotropic pattern of the
BRDFs within that surface type. Sensitivity analysis on MBSE side
of the model, to streamline the variable space so that only the key
variables are simulated, has been published (Nag et al., 2015a).

For any givenreference data (constant surface type and SZA) and
any given number of satellites, unconstrained optimization will be
used to find the best and worst angular sampling on the VZA-RAA
polar plot. Obviously, the astrodynamics and systems engineering
constraints will not allow a perfect spread, however, the analysis
can inform what to aim for and what to avoid. Heuristic optimiza-
tion routines, specifically simulated annealing, have been found
to be the best for the purpose and are used from MATLAB'’s Opti-
mization Toolbox (Nag, 2015). After constraining the key design
variables in the OSSE, the SysEng Model’s outputs (satellite states
and corresponding angular coverage) can be evaluated in terms
of BRDF estimation uncertainty. The reduced-variable OSSE will
then be applied to an architecture tradespace to differentiate their
science performance.

3.1. Sensitivity to wavelength

The CAR data are available at all angles for 8 wavebands,
with the band width in parenthesis: #1=0.340 pm (0.009 wm),
#2=0.381 wm (0.006 pm), #3=0.472 pm (0.021 wm), #4=0.682
pm  (0.022 wm), #5=0.870um (0.022 wm), #6=1.036um
(0.022 wm), #7=1219pm (0.022wm) and #8=1.273 pm
(0.023 wm). The 6 other wavebands, collected using the CAR’s
filter wheel, have not been used in this study. If the angular
dependence is very different per waveband, then a different
measurement spread will be optimal for different wavebands,
in spite of looking at the same surface or ground spot. This will
entail fractionating the instrument or flying instruments that
measure different parts of the spectrum on different physical
entities—adding more complexity to the mission. On the other
hand, if the angular dependence per waveband is similar, then the
formation geometry can be optimized for any band and optimal
performance at the other bands expected. The BRDF data as a
function of VZA and RAA per surface type (thus per SZA) were
cross-correlated among all pairs of wavebands and results from the
least correlated 4 surface types plotted in Fig. 8. Only significant
correlations (p <0.05) have been considered.

Snow and croplands show very high correlation among all band
pairs and the minimum Pearson coefficient (r2) is 0.83 and 0.67,
respectively. The red and NIR bands (#4 and higher), our spec-
tral region of interest in snow and vegetation, show very high
correlation. Water shows significantly high correlation among all
band-pairs except between the UV and NIR bands (#1 and #2)
because the sun glint is very weak in the UV bands. Water leaving
radiance in the absence of glint can be well approximated by the
same formation geometry that estimates glint or radiance, hence,
the low coefficients in UV do not pose a design change requirement
in angular acquisition. Savannahs show low correlation between
the blue/UV and red/NIR bands. This is because the vegetation
hotspot is much stronger in the red or NIR bands than in blue or

UV; band #3 and below show less pronounced anisotropy than
the others. As before, a formation that captures the pronounced
anisotropy, apparent in the red bands, should be able to capture
the weak hotspot, if at all present, for less vegetated regions in
the visible bands. Furthermore, the data we use does not include
atmospheric correction. Atmospheric aerosols have more signifi-
cant effect in the UV and VIS bands than others, which could be
the reasons for divergence in anisotropy. Bands with pronounced
signatures and least aerosol effects are therefore best selections for
formation geometry optimization.

The wavelength analysis indicates that it is sufficient for the
OSSE to use only one but representative waveband for the process of
selecting and evaluating the formation because the optimal angular
sampling at one band implies an optimal angular sampling of the
other. Payload fractionation is also not required. In keeping with the
above results, the representative band for water was selected to be
#3 because the water leaving radiance is best seen at the CAR blue
band; for vegetated regions (savannah, forests, croplands) we use
#5 because the hotspot is most pronounced and for snow we use #6
because of minimal aerosol effects while keeping the pronounced
glint. Data at the selected wavelengths are plotted in Fig. 5.

3.2. Sensitivity to BRDF models

One among the available BRDF models has to be chosen to
extrapolate reflectance as accurately as possible at a few angles
to the full hemispherical reflectance (BRDF) over any surface type.
For any given surface and a ‘perfect’ angular spread (Box 1 and 2
in Fig. 4), the goodness of a model can be judged by the RMS error
of BRDF estimation (green box in Fig. 4) and by its inversion resid-
ual. The inversion residuals have to be significantly lower than the
RMS errors for the evaluation method (Fig. 4) to be used at all so
that the RMS errors can be attributed to model or angular sampling
imperfections, rather than mathematical aberrations.

RTLS, when inverting for its 3 parameters, has residual norms
<0.05% of the measured reflectance values. The residuals are com-
pletely independent of the initial conditions, being a perfectly linear
model, and have very little dependence on the angular spread.
MRPV has slightly higher residuals, which are very sensitive to ini-
tial conditions. The CM model inversion, being the most non-linear,
is very sensitive to the initial conditions and moreover, converges
to very inconsistent parameters (e.g. wind speed) for different ini-
tial conditions but equally diverse angular spreads. To mitigate this
instability, the true CM parameters for the OSSE data sets in this
study, as inverted using the full radiative transfer SHARM code and
published Gatebe et al., 2005, are used as the initial conditions.

RMS estimation errors among models are hard to compare
because the perfect angular spread is not known or unique. For each
of the 4 land surface types with pronounced angular signatures, 100
Monte Carlo runs were simulated with random numbers of satel-
lites between 3 and 8 and random (unconstrained) angular spreads
with those satellites. The RMS error in BRDF estimation (green box
in Fig. 4) obtained from the MC runs are plotted in Fig. 9 when
the model used is RTLS (left) or MRPV (right). The distributions
are mostly right-tailed, indicating that random angular spreads
(unfortunately impossible to achieve astrodynamically) minimize
errors. RTLS performs marginally better than MRPV. MRPV does
well for some surface types and initial conditions. For example,
Fig. 10 shows the reconstructed BRDF from 9 satellites in an A-
Train configuration when the MRPV (left) vs. RTLS (middle) model
is used. The data set on which the models are fitted/inverted is the
Savannah vegetation in Fig. 7-left at SZA=28°. The shape of the
reconstruction is better for MRPV however the values are closer
for RTLS, thus leveling it out in terms of RMS errors. When a sim-
ilar reconstruction is attempted using snow data, RTLS performs
better in terms of shape and intensity and the reconstructed BRDF
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Table 2

BRDF RMS errors when using measurements simulated by 6 satellites in a leader-
follower configuration flying over water with variable SZA and using the RTLS vs.
the CM model with initial wind speed (V) and aerosol optical depth (AOD) as listed,
and an initial sky radiance algorithmically calculated.

Solar zenith angle RMS error (RTLS) RMS error (CM) CM initial conditions

16° 0.02 0.02 V=6.14 m/s,AOD=0.43
20° 0.05 0.02 V=1.58 m/s,AOD=0.19
30° 0.04 0.02 V=1.08 m/s,AOD =0.05
44° 0.05 0.04 V=2.88 m/s,AOD=0.13

shown in Fig. 10-right. BRDF>1 is due to normalization of aircraft
collected data at the top of the atmosphere, and in keeping with
the reference data in Fig. 7-right. This analysis along with RTLS’s
independence on initial conditions, linear form, lower residuals,
NASA heritage in generating BRDF products and proven merit in
both snow (Lyapustin et al., 2010) and vegetation (Roman et al.,
2011) led to the selection of RTLS as the land BRDF model on our
OSSE.

The RTLS model when applied to water data gives very high
errors compared to land data. The CM model, which depends
strongly on wind speed, has traditionally been best suited for mod-
eling water radiance (Gatebe et al., 2005; Gatebe et al., 2011).
Measurements by a string of 6 satellites in the A-Train configu-
ration at a random solar azimuth angle and 4 solar zenith angles
corresponding to the CLAMS ocean BRDF data from CAR (Fig. 6
and Fig. 5-inset) were simulated. The RTLS and CM models were
used on these datasets to invert for their respective parameters
and the RMS errors between the forward model results and refer-
ence data in Table 2. The CM model performs better for most SZA
angles compared to the RTLS, as expected, and will be used as the
model in Box 4 of Fig. 4 whenever the simulated formation in Box 2
is expected to fly over water. For all other surface types, RTLS will be
used.

The CM model’s initial parameters, as mentioned before, are
selected from the published values in (Gatebe et al., 2005), either
from full SHARM inversions or measurements at the campaign
site. The initial wind speed and aerosol optical depth per data set
(sorted by SZA) are listed in Table 2. The initial sky radiance has
been calculated by subtracting the BRDF term calculated using ini-
tial V and AOD from (Gatebe et al., 2005). Fig. 11-left shows the
BRDF reconstructed from 6 measurements in a string of pearls
configuration, like A-Train, using the CM model with the appro-
priate initial parameters applied to CLAMS data set for SZA =30°
(Fig. 6-middle). The reconstruction is accurate in terms of shape and
intensity of the anisotropy, with inverted wind speeds ~1m/s. In
contrast, when wind speeds of 5 m/s and no aerosols or sky radiance
were used, the BDRF signature is shown in Fig. 11-right. Radiance
from water decreases with increasing wind speed (Feldman et al.,
2011; Gatebe et al., 2005), decreasing aerosol concentration and
increasing sky radiance. Wind speeds also spread out the sun glint
size and for higher SZA angles (> =50°) diffuse it along the principal
plane.

3.3. Sensitivity to measurement angular spread

The next step is to estimate the optimal measurement spread
in the VZA-RAA plane for a given SZA, satellite number and
surface type. Heuristic optimization has been used for the pur-
pose, specifically unconstrained simulated annealing. The SA
algorithm included selecting an initial system temperature, initial
spread and cooling schedule. We automated our temperature to
abs(—E,/log(0.99)) where E, is the BRDF error corresponding to
the initial spread and selected a linear cooling schedule to allow

for more time to converge. The objective function is the system
energy (BRDF error), which needs to be minimized. Fig. 12 shows
the results of SA optimization on an N=3 point spread on the
VZA-RAA plane for 4 different land surface types. The initial spread
is a string of pearls/leader-follower/A-Train configuration with a
random solar azimuth angle (red in all plots in Section 3). The final
spread, irrespective of its shape, always moves away from the ini-
tial spread indicating that the initial configuration, which is the
same as that obtained by all monoliths such as MISR and MODIS,
is never optimal. The right-hand column shows the convergence
history of the RMS errors (system energy or the objective function)
from the initial spread to the final spread. Each history has one panel
for the last re-arrangement (bottom) and the best-performing re-
arrangement (top) per iteration. Convergence is confirmed because
there is not much improvement in errors when the iterations were
increased from 100 to 200.

Fig. 12 makes it obvious that the error improvement over the
straight line spread is not equally significant for all surface types.
The savannahs show the least error after convergence (0.013 or
a 3.5% improvement), followed by water (0.022 or a 5% improve-
ment) and croplands (0.054 or an 18.5% improvement), and finally
snow (0.061 or a 20% improvement). Water has the lowest absolute
value because the wavelength of the reference data used in the OSSE
is lower than that of savannah, which is lower than croplands, and
which is lower than snow. Hence, water (snow) data is expected to
have the lowest (highest) absolute radiance. The cropland improve-
ment is due to the initial spread being perpendicular to the principal
plane, therefore missing the hotspot anisotropy entirely. The opti-
mal spread pushes the sampling toward the hotspot (RAA=180°,
VZA=68° as in Fig. 5 inset). The snow improvement similarly can
be attributed to initial sampling missing the forward glint peak,
which the optimal spread is able to capture (RAA=0, VZA=66°
as in Fig. 7-right). This analysis demonstrates the importance of
having a formation because monoliths are not always able to sam-
ple the top and bottom hemisphere of the BRDF polar plot due to
the changing solar azimuth, and during these time periods, record
higher than optimal BRDF errors. By spreading satellites over many
azimuths, this under-sampling can be improved. In fact, even when
the A-Train spread was able to sample both hemispheres (savan-
nah and water in Fig. 12), spreading the measurements over the
azimuth improved the errors by a few percentages. The optimiza-
tion results of forests resemble that of croplands because of similar
anisotropy and wavebands (Fig. 5-inset). Urban or city data has a
very weak hotspot signature in the NIR bands and a very random
angular signature in the visible bands due to high reflection off
buildings, concrete and glass. Due to the relatively flat and random
anisotropy plots of cities and deserts respectively, their formation
optimization results are not as unique or customizable thus have
not been shown.

3.4. Sensitivity to solar zenith angle

The previous section demonstrated the estimation benefit in
spreading out angular measurements over zenith and azimuth for
all the CAR datasets. CAR data has one solar zenith (SZA) per data set
for most surface types. For data sets where multiple SZA are avail-
able, the effect of changing SZA is analyzed, to confirm the impact
of its absence in some surface types. If BRDF estimation errors are
sensitive to the CAR data’s SZA, in spite of perfect SZA knowledge
inputted into the models, then our current data will need to be
supplemented with other BRDF data sources over and above CAR.
For example, tower measurements from the AMSPEC instrument,
which takes measurements at hundreds of SZA, can be used (Hilker
et al., 2008; Nag et al., 2013). Fig. 7 shows the SZA dependence of
land reflectance, primarily the position of the hotspot, and Fig. 6
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Fig. 12. Simulated annealing optimization results for 3-point measurements on the BRDF polar plot when inverting on data from the following surface types from top to
bottom—water, croplands, savannahs, snow. The right-side column shows the convergence history of RMS errors from the initial to final spread. The radial striations for all
angular spread plots are 20° in view zenith angle (VZA).
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Table 3

BRDF errors associated with the initial and final spreads of 4-point measurements
on the BRDF polar plot when inverting on CLAMS data for water BRDF at different
SZA.

Solar zenith angle Initial RMS error Final RMS error

6° 0.0218 0.0172
20° 0.0303 0.0218
30° 0.0277 0.024
44° 0.0491 0.0373
Table 4

BRDF errors associated with the initial and final spreads of 4- and 6- point measure-
ments on the BRDF polar plot when inverting on CLASIC, SAFARI and CLAMS data
for 3 different surface types.

N=4 N=6
Surface type Initial RMS Final RMS Initial RMS Final RMS
error error error error
Croplands 0.0773 0.0606 0.203 0.054
Savannah 0.019 0.014 0.026 0.013
Water 0.0277 0.024 0.0281 0.021

SZA dependence of water reflectance, primarily the position of the
sun glint.

The positions of 4 points (corresponding to 4 unconstrained
satellites) were optimized on the VZA-RAA polar plane for mini-
mum BRDF error when selected from and fitted to water data from
the CLAMS campaign. As before, these optimal spreads are impossi-
ble to maintain in a dynamic space orbit, and are only used to inform
how the perfect spread changes as the solar illumination angle
changes. Fig. 13 shows the resultant spreads from the optimization
and Table 3 the corresponding BRDF errors. As expected, the opti-
mal spreads move away from the initial A-train-like spread with a
random solar azimuth because BRDF estimation is improved, to dif-
ferent extents for the different surface type, by azimuthal coverage.
The improvement observed ~0.01 in absolute but ranges from 13
to 28% in the relative scale. Repeating the simulation using Savan-
nah data at two SZAs shows similar significant improvement in
error by adding more azimuthal spread but shows negligible error
difference due to data sets with different SZA.

Neither the final VZA-RAA spreads nor their corresponding
BRDF errors show a pattern with changing reference data as SZA
changes (Fig. 6). A slight dependence can be gauged by the fact that
the maximum VZA of the measurements increases as SZA increases,
perhaps to be closer to the vicinity of the glint or hotspot. However,
these spreads are in no way unique because similar low errors are
possible by spreading out the 4 points in the different ways that
capture more azimuth than zenith Table 4.

The key take-away is that the optimal angular spreads are not
very sensitive to the SZA for the same surface type, when the
SZA is known. While we acknowledge Helmholtz reciprocity and
that optimal VZA is theoretically dependent on SZA, having precise
knowledge of the SZA relaxes the stringency on the optimal VZA.
Non-uniqueness of solutions is a shortcoming of heuristic opti-
mization and its associated perturbation function to make different
generations of variables. Nonetheless, heuristics does inform us
thatas long as angular measurements are available and well-spread
on both hemispheres of the BRDF polar plot, the BRDF models are
able toreconstruct the reference data with similar accuracy because
they are able to predict the shape and size of the hotspot/glint based
on the slopes around these features Fig. 13. Amission that produces
greater coverage of the angular space can help improve these mod-
els and more accurate BRDF can be reconstructed using sub-optimal

data. Given our BRDF models, CAR data classified using the MODIS
land cover map, is deemed sufficient as reference data for our OSSE.

3.5. Sensitivity to number of satellites

A previous study has shown that BRDF RMS errors (estimation
accuracy) do not depend on the number of measurements or satel-
lites (Nag et al., 2014), for more than 3 view angles, and if arranged
optimally for the Savannahs. This is expected because RTLS is a lin-
ear model with 3 parameters and should be uniquely invertible for
non-redundant data, hence the importance of good angular spread.
The CM model for water, due to its non-linearity and dependence
on the radiative transfer model, is expected to show improved
results with better spread of data points on the VZA-RAA plane.
In this study, due to the true initial conditions, those effects are not
seen.

Fig. 14 shows the optimal spread for 4 (left column) and 6
(right column) measurement points on the VZA-RAA plot, SZA
notwithstanding, when optimized for BRDF data over croplands,
savannah and water. The corresponding errors are shownin Table 3.
The convergence histories are similar to those in Fig. 12. The
error improvement from 4 to 6 measurements is negligible com-
pared to the improvement from initial to final spread, i.e. from
azimuthal spread of the measurements. Fig. 14 further shows
that while optimization for N=4 spreads the measurement points
around the polar plot when started off as a straight line (A-train
or monolithic arrangement), the final spread does not improve
much from N=4 to N=6. More points end up clustering at simi-
lar positions on the plot. While this can be numerically prevented
by constraining the degrees of separation in the variables during
optimization, it still indicates that similar low errors are possi-
ble with lower number of measurements, given currently selected
models.

In spite of the negligible dependence of estimation errors on
number of measurements, number of satellites is retained as a key
variable in the OSSE for two reasons. One, the optimal spreads are
impossible to maintain or achieve in the dynamic, orbital environ-
ment. While N =3 satellites may be sufficient for acceptable errors
in the static, unconstrained frame, increasing the number of satel-
lites increases the chances that one of the optimal spreads will be
achieved in spite of the relative motion of the satellites and the
disturbing forces (e.g. atmospheric drag) over their lifetimes (Nag,
2015; Nag et al., 2014). Two, the simple models (RTLS, MRPV, and
CM) were designed to reconstruct BRDF from a few measurements
that monolithic sensors are capable of providing. Better angular
spread of measurements may not improve static BRDF estimation
when used with the described models. However, better spread will
certainly help the final products when radiative transfer models are
used as well as pave the way for the design of more complex models
such as those used in the fields of computer graphics and gravity
estimation. This will help scientists understand the anisotropy of
the observed surfaces.

4. Formation performance case study

The full architecture tradespace for varying angular samples is
generated by varying the number of satellites between 3 (mini-
mum required for BRDF models) and 8 (maximum constellation
size funded by NASA (Yost, 2013) and choosing among the five
most popular secondary launches from Spaceflight Inc.’s launch
manifest.? The relative positions of satellites in a formation have
been restricted to 8 slots with respect to the chief satellite, which

3 Spaceflight Inc: http://spaceflightservices.com/manifest-schedule/.
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Table 5

Averaged percentages over a 4-h simulation with 154 maintainable formation configurations for only ISS chief orbit with variable number N of satellites. The numbers are

for the configurations with minimum and maximum BRDF and albedo.

N=6 N=7

BRDF Albedo BRDF

Albedo BRDF Albedo

Max
23.6

Min
21.2

Max
1.29

Min
1.12

Max
25.26

Min
21.83

Max
1.56

Min
0.67

Max
234

Min
21.05

Max
3.71

Min
1.04

is the nadir-looking satellite. The only orbital elements that differ-
entiate the slots are their right ascension of the ascending node and
mean anomaly. While their relative positions with respect to the
chief satellite change with time, orbit sensitivity studies (Nag et al.,
2015a) have shown the selected 8 slots to be sufficient and main-
tainable using current, small satellite technology. They are shown
as squares in Fig. 16-inset, and the presence of satellites in those
slots as orange squares. For a given altitude and inclination of the
chief orbit, there are a total of 1254 combinations to arrange 3-8
satellites into 8 slots (Nag et al., 2015a), which form the potential
formation configurations.

Over the course of the orbit, the chief satellite changes periodi-
cally and all satellites point their payload dynamically toward the
ground spot of the new chief satellite, so as to minimize the resul-
tant BRDF error using an algorithm described in Reference (Nag,

2015) applied to the OSSE described in this paper. A Pareto fron-
tier between performance and number of satellites in a formation
can be seen in Fig. 15, for all possible configurations per satellite
number. The ideal point is at the lower, left corner. Monolithic
BRDF error is at 23.2%. Fig. 15 shows that 6 satellites, arranged
optimally, can make angular measurements that estimate BRDF
better than MISR can. To improve the error further at more cost,
one can add additional satellites. The variance across configurations
decreases with satellite number because of diminishing returns of
organizing more satellites into a limited number of well-spread
slots. The Pareto optimal formation configuration for any satellite
number corresponds to that with the lowest average error percent-
age. The figure establishes that if the optimal configuration can be
maintained, there is diminishing advantage to adding more than
6 satellites. However, in the event of inaccurate initialization or
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Fig. 14. Simulated annealing optimization results for 4 (left) and 6 (right)-point measurements on the BRDF polar plot when inverting on croplands, savannah and water
data (from top to bottom). Plots can be compared to Fig. 12 for 3- point optimal spreads for the same surface type.

maintenance, there is slightly more advantage to having a larger
number.

Fig. 16 shows the error curves over 93 min (one orbit only)
for all formation configurations using 6 satellites for a chief orbit
at 650 km, ISS inclination. Each configuration assumes a dynam-
ically changing chief satellite that will point nadir while the
others arrange their attitudes to point below it, using an imaging
mode algorithm described in Reference (Nag, 2015) and the OSSE
described in this paper. The BRDF error is calculated for every for-
mation and MISR at every time step, using the method in Fig. 4 and
the data from Fig. 5, depending on which surface type lies under

the chief satellite. The time step is set to a minute, and can be
made finer if a finer grid and spatial reference data distribution
is used. The thick black line indicates the formation whose mean
BRDF error over a 4 h period is the minimum (configuration shown
as orange squares in Fig. 16-inset) and the black asterisks indi-
cate the BRDF error due to MISR’s measurements in a similar time
period, calculated in the same way. While MISR does extremely
well for much of the orbit, as expected because of its nine sen-
sors well-spread in the zenith direction, it is outperformed by the
formation for the section of the orbit when its sensors become per-
pendicular to the principal plane, causing major angular features
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to be under-sampled. The errors are plotted as percentages to pre-
vent biases caused due to different surface types being sampled
at the same time by MISR versus the formation (different orbits
and time periods). The near-zero errors are over deserts because of
their insignificant anisotropy, allowing a measurement at any one
(known) angle to characterize BRDF. Fig. 16-inset serves as the pro-
posed baseline that outperforms the monolith in angular sampling
as well as other 6-satellite formations.

Table 5 shows the improved errors for both albedo and BRDF,
assuming 6 to 8 satellites. While monolithic BRDF performance
(23.2%) is matched well using 6 satellites, arranged optimally, the
same feat can be achieved using 8 satellites arranged in any way.
In the event of non-ideal initialization or maintenance of the for-
mation and as long as they are spread in right ascension and
mean anomaly, an 8-sat formation will outperform the monolithic
configuration—thus making a strong case for flexibility and scal-
ability of formation operations. More interestingly, the minimum

albedo error percentage over all configurations for any number of
satellites is better than MISR’s error percentage of 3.6%. The ability
to outperform monoliths for albedo with less satellites than those
needed for BRDF can be attributed to the fact that albedo is a single
value for any given spot. On the other hand, BRDF RMS error sums
up the error for 360 x 80=28,800 different values of reflectance
in different VZA and RAA directions, leaving more room for error
compared to the reference data. Increasing the satellite number
improves estimation errors for some extra dollars. Parallel liter-
ature (Nag, 2015) has also shown that the BRDF estimation errors
calculated using the OSSE are independent of the chief orbit altitude
and inclination, as long as the nadir-looking satellite can be changed
dynamically to optimize the spread, thus providing launch flexi-
bility for formation initialization. The coupled OSSE model enables
informed choices for mission design based on the performance-cost
Pareto front.

5. Summary

This paper describes an observing system simulation exper-
iment (OSSE) to design and evaluate the performance of a
small satellite formation for estimating BRDF via simultane-
ous multi-angular measurements. Current monolithic spaceborne
instruments are not able to obtain such measurements due to being
restricted in one orbital plane and end up compromising in other
sampling dimensions to circumvent the planar restriction (Table 1).
Airborne instruments, such as the CAR, provide excellent local data
but cannot be used for global and frequent BRDF estimation. Cur-
rent spaceborne and airborne data together make a state-of-the-art
database for reference BRDF, based on which an OSSE can be built.
Our overall tradespace analysis tool generates thousands of forma-
tion architectures which are then evaluated by the OSSE in terms
of BRDF RMS error with respect to the reference data. The BRDF
models selected are RTLS and MRPV for BRDF over different land
surface types and Cox-Munk (CM) for water surfaces.

A rigorous study is performed to understand the dependence
of BRDF estimation errors on key OSSE variables: wavelength of
reflected light, BRDF models, solar zenith angle (SZA), measure-
ment angular spread in terms of zenith angle (VZA) and azimuth
angle with respect to the sun (RAA) and number of satellites. The
RTLS model was found to be more consistent than MRPV for the pur-
pose of this study due to its independence on initial conditions. Very
precise initial conditions for the CM model were defined to prevent
local trapping in its inherently non-linear inversion. Wavelength
sensitivity showed that CAR BRDF data at wavelengths which dis-
play significant anisotropy are highly correlated, thus, the optimal
angular spread of measurements at any of these wavelengths trans-
lates to an optimal spread at the others. SZA sensitivity showed that
BRDF estimation errors do not depend on the SZA of the CAR data
used as reference as long as the SZA value is precisely known, thus
eliminating the need for denser datasets. VZA and RAA sampling
sensitivity highlighted the importance of even, azimuthal sampling
to reduce BRDF uncertainties but discounted the necessity of strict
angular sampling requirements given the current BRDF models.
Optimal angular spread is dependent on surface type and number
of satellites but a well-spread sampling gave similar results over the
full variable space. This inference is likely to change when complex
models with integrated radiative transfer will be used to obtain
the eventual ground products. Heuristic optimization (simulated
annealing) was used to find the most optimal angular spreads, for
specific values of OSSE variables. Satellite number was retained as
an important OSSE variable to allow for flexibility in optimal angu-
lar spread as the relative positions of the satellites change with time
and to provide measurements with better angular spread to build
better BRDF models.
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The OSSE model calculates BRDF errors per time step, as a func-
tion of the surface type below the satellite or formation, for all
architectures of formations. MISR’s configuration was selected as
the monolithic state-of-art, because it provides the most accurate,
global BRDF products. A formation of 6 satellites or more were
found to produce lower BRDF estimation errors, averaged over mul-
tiple orbits, compared to the MISR configuration, when errors were
calculated using the OSSE described in this paper. The OSSE allows
the selection of the least error formation configuration as well as
quantifies the performance improvement with increasing satellites
and cost. All else being equal, the only error considered in this paper
is that of angular sampling, therefore we make a strong case for for-
mations serving as a complement to flagship missions in terms of
such sampling gaps.

Future work includes refining the presented OSSE coupled with
a systems engineering model to produce more rigorous error esti-
mates. More generically, this work can serve as the introduction to a
new method of mission design where in systems engineers, early in
the design cycle itself, plug in their designs into appropriate OSSEs
so that the science performance impact of their variable changes
can be captured and traded. This process is all the more impor-
tant for small satellites, constellations or any new measurement
technique to prove science-quantifiable and justifiable addition to
current flagship missions.
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