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Over the past decade, the role ofmultiangle remote sensing has been central to the development of algorithms for
the retrieval of global land surface properties including models of the bidirectional reflectance distribution
function (BRDF), albedo, land cover/dynamics, burned area extent, as well as other key surface biophysical
quantities impacted by the anisotropic reflectance characteristics of vegetation. In this study, a new retrieval
strategy for fine-to-moderate resolution multiangle observations was developed, based on the operational
sequence used to retrieve the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5 reflectance
and BRDF/albedo products. The algorithm makes use of a semiempirical kernel-driven bidirectional reflectance
model to provide estimates of intrinsic albedo (i.e., directional-hemispherical reflectance and bihemispherical
reflectance), model parameters describing the BRDF, and extensive quality assurance information. The new
retrieval strategywas applied toNASA's CloudAbsorption Radiometer (CAR) data acquired during the 2007Cloud
and Land Surface Interaction Campaign (CLASIC) over the well-instrumented Atmospheric Radiation
Measurement Program (ARM)SouthernGreat Plains (SGP)Cloud andRadiation Testbed (CART) site inOklahoma,
USA. For the case analyzed, we obtained ~1.6 million individual surface bidirectional reflectance factor (BRF)
retrievals, from nadir to 75° off-nadir, and at spatial resolutions ranging from 3 m to 500 m. This unique dataset
was used to examine the interaction of the spatial and angular characteristics of a mixed agricultural landscape;
and provided the basis for detailed assessments of: (1) the use of a land cover type-specific a priori knowledge in
kernel-driven BRDFmodel inversions; (2) the interaction between surface reflectance anisotropy and instrument
spatial resolution; and (3) the uncertainties that arise when sub-pixel differences in the BRDF are aggregated to a
moderate resolution satellite pixel. Results offer empirical evidence concerning the influence of scale and spatial
heterogeneity in kernel-driven BRDF models; providing potential new insights into the behavior and
characteristics of different surface radiative properties related to land/use cover change and vegetation structure.
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1. Introduction

Techniques for determining the structure and optical properties of
complexheterogeneous environments usingmultiangle remote sensing
are crucial for understanding the effects of environmental change on
vegetation structure and thus improve our ability to model terrestrial
carbon cycle dynamics and to characterize the ecological functioning of
many ecosystems. Recent studies have made considerable progress in
developing algorithms for the extraction of quantitative information on
terrestrial surface heterogeneity at the subpixel scale (Sandmeier et al.,
1998; Widlowski et al., 2001; Pinty et al., 2002; Armston et al., 2007;
Chopping et al., 2008;Hill et al., 2008). In general, this has been achieved
by examining how different manifestations of the surface reflectance
anisotropy over the angular range are directly related to canopy
physiognomy and structure (e.g. canopy height, size, inter-distance
between trees, and background vs. foliage contributions).

In the past, previous experiments have generally followed the
central assumption that “the potential to detect structural heteroge-
neity is independent of the spatial scale corresponding to the pixel
size” (Pinty et al., 2002). In line with this assumption, earlier studies
have treated satellite BRDF/albedo retrievals as being observed over a
homogeneous landscape; thus allowing direct “point-to-pixel” com-
parisons (Hautecoeur & Leroy, 1998; Liang et al., 2002; Jin et al.,
2003a,b; Salomon et al., 2006; Chen et al., 2008; Knobelspiesse et al.,
2008; Liu et al., 2009; Rutan et al., 2009). Recent studies have further
evaluated surface albedo retrievals both in terms of the spatial
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correspondence (or representativeness) of the field (or tower-based)
data and its relationship to the larger satellite pixel (Susaki et al.,
2007; Román et al., 2009, 2010). However, because of the impact of
view and solar zenith angle (SZA) dependencies, sub-grid scale spatial
heterogeneity, and other underlying sources of variation that
introduce measurement uncertainties within the ground resolution
element (GRE) of satellite retrievals; the BRDF (and thus albedo) of
certain ecosystems can only be correctly sampled with airborne
multiangle measurements (Walthall et al., 2000). Among key biomes
affected by these sources of error are mixed-forest canopies (Johnson,
1994; Russell et al., 1997), tropical savannas (Hill et al., 2008;
Georgiev et al., 2009), shrublands (Chopping et al., 2004), as well as
snow-covered environments (Lyapustin et al., 2010). Furthermore,
recent studies contend that subpixel vegetation structure is only
detectable when obtaining measurements near the principal plane;
i.e., where BRDF effects are most pronounced (Chen et al., 2005).
Consequently, the exact nature of these angular-to-structural re-
lationships has been difficult to quantify at the relevant view-angle
geometries of satellite sensors that routinely sample the BRDF over a
single overpass (Leroy et al., 1997; Diner et al., 1998b) or in the course
of multiple overpasses (Schaaf et al., 2002; Muller et al., 2007).

This study presents a new BRDF/albedo retrieval scheme that uses
high quality, multiresolution, and multispectral surface bidirectional
reflectance factor (BRF) measurements acquired by NASA's Cloud
Absorption Radiometer (CAR) (King et al., 1986; Gatebe et al., 2003).
The retrieval strategy, described in Section 2 and tested in Section 3
using data acquired over the well-instrumented Atmospheric Radia-
tion Measurement Program (ARM) Southern Great Plains (SGP) Cloud
and Radiation Testbed (CART), is based on the operational Moderate
Resolution Imaging Spectroradiometer (MODIS) algorithm for re-
trieving Surface Reflectance (Vermote et al., 1997; Kotchenova et al.,
2006), BRDF and albedo (Schaaf et al., 2002, 2011).

Routine production of land surface BRDF retrievals is often achieved
by compiling (or relying on) a global database of archetypal BRDFmodel
reconstructions that seeks to describe the general anisotropic reflec-
tance characteristics of terrestrial ecosystems, at several seasons
whenever possible (Bicheron & Leroy, 2000; Strugnell et al., 2001;
Lacaze et al., 2002; Bacour & Bréon, 2005). The BRDF associated with
each location is then assumed to be governed by the character and
structure of its land cover (Roujean et al., 1992; Román et al., 2009). In
other cases, target-specific BRDF knowledge is used to supplement
available observations and improve the quality of a retrieval. For
instance, Jin et al. (2002) leveraged the BRDFmodel parameters derived
from Multi-angle Imaging SpectroRadiometer (MISR) surface BRFs to
bring additional information to the MODIS retrieval scheme; especially
when theMISR observations were close to the principal plane. In either
case (i.e., using target-specific or land cover type-specific knowledge), a
priori information is being used to indicate when retrieved BRDFmodel
parameters (or albedos) are outside the expected bounds. These
approaches are based on Bayesian inference theory,which is considered
to be the bestway tomakeuse of a priori knowledge to yield a posteriori
estimates of unknown BRDF model parameters (Li et al., 2001).

In this study, the new BRDF/albedo retrieval scheme was used to
examine the two major assumptions underlying the use of a land cover
type-specific a priori knowledge in kernel-driven BRDF models (Lewis,
1995). The first assumption contends that “linear BRDF models can
implicitly model surface heterogeneities”. The second one argues that
“spatial degradation of modeled bidirectional reflectances can be
achieved through degradation of the BRDF model parameters”. The
assumptions were tested in parallel by comparing the relative model-
fits (RMS) error from full-inversion retrievals (i.e., high-quality BRDF
model inversions obtained directly from CAR measurements) against
those that employ an ancillary database of archetypal BRDF model
reconstructions to describe the surface anisotropy as either: (1) a linear-
mixture of different land cover types; or (2) a single (or dominant) land
cover type. In all cases, the RMS of relative error was obtained by
simulating the surface BRF at the angular sampling of all observations
over a given CAR grid cell; thus obtaining error estimates for various
spectral bands and spatial scales (cf., Section 4.1).

Because of the difficulties of estimating, validating, and conveying
measurement differences between sensors and in-situmeasurements,
there is also a need to directly examine the accuracy, precision, and
uncertainty (APU) of land surface BRDF products; particularly, across
complex heterogeneous environments. Accordingly, the interaction
between instrument spatial resolution and surface reflectance
anisotropy was examined by assessing the distribution of relative
differences in surface BRF retrievals obtained from CAR and MODIS
BRDF model inversions at different spatial scales and across different
spectral regions and view-angle geometries. Finally, the quality of
MODIS Collection 5 (MCD43A1) surface BRF retrievals was evaluated
across spatial scales to further quantify the uncertainties that arise
when sub-pixel differences in the BRDF are aggregated to a moderate
resolution satellite pixel (cf., Section 4.2).

2. BRDF/albedo retrieval scheme

The new scheme has three main functional components: atmo-
spheric correction (Fig. 1a), geolocation andgridding (Fig. 1b), andBRDF
inversion (Fig. 1c). The aim of atmospheric correction is to retrieve
surface-level bidirectional reflectance factor (BRF) measurements from
remotely sensed CAR data, which is contaminated by the effects of
atmospheric particles and gasses through absorption and scattering of
the radiation, especially from the Earth's surface. The aim of geolocation
and gridding is to determine the center coordinates of each observation
along the instrument scan line (since the CAR data provide only the
geolocation of the nadir-looking ground resolution element of each
scan), and to register the data to a common grid tomaintain consistency
across datasets. The aim of BRDF inversion is to fit the RossThick-
LiSparseReciprocal (RTLSR) BRDF model parameters to surface-level
BRF measurements available over each CAR grid cell and spectral band.
The retrieval scheme also performs angular integrations to derive
intrinsic land surface albedos for each spectral band, and is supported by
extensive quality assurance (QA) information.

2.1. Atmospheric correction

In the past, various radiative transfer (RT) schemes have been used
for the atmospheric correction of CAR data (cf., Gatebe et al., 2003,
2005; Lyapustin et al., 2010). In this study, we used the second
simulation of satellite signal in the solar spectrum (6S) model, version
6SV1.1 (Vermote et al., 1997; Kotchenova et al., 2006), which is the
heritage model used in the operational MODIS algorithm for
retrieving Surface Reflectance. The 6S code is an RT model based on
the successive orders of scattering method. The spectral resolution of
the model is 2.5 nm, and the aerosol layer is divided into 13 layers
with a scale height of 2 km. The model assumes the atmosphere
consists of radioactively active fixed gasses: O2, O3, H2O, CO2, CH4, and
N2O. The concentration of O2, CO2, CH4, and N2O is assumed to be
constant and uniformly mixed in the atmosphere. The 6S model
allows us to determine the attenuation of solar irradiance under
cloudless conditions at the surface. It removes the effects of Rayleigh
scattering, aerosol attenuation, and ozone and water vapor absorp-
tion, provided we know the key characteristics of the atmosphere,
such as the atmospheric optical thickness, aerosol model, and
absorbing gas concentration. Since the CAR measurements were
acquired during intensive field campaigns, coincident and co-located
ground-based and airborne data needed as input to the 6S model
exist. For example, aerosol parameters can be obtained from ground-
based sunphotometer measurements (Holben et al., 1998), or from
the Ames Airborne Tracking Sunphotometer (Russell et al., 1999), or
retrieved from CAR measurements (Fig. 1a) (Gatebe et al., 2010).
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Fig. 1. Processing and data flow diagram illustrating the production of spatially-distributed BRDF retrievals from NASA's Cloud Absorption Radiometer (CAR). The retrieval scheme
has three main functional components: (a.) atmospheric correction; (b.) geolocation and gridding; and (c.) BRDF inversion.
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2.2. Geolocation and gridding

Since the CAR has a wide swath (190°) and an instantaneous field of
view (IFOV) of 1°, there is a need to determine the center coordinates of
each observation (latoff-nadir, lonoff-nadir) along the scan line from nadir to
near-horizon (i.e., 0°≤θv≤75°). We used the expression,

latoff−nadir = sin−1 sin latnadirð Þ⋅ cos d
R⊗

� �
+ cos latnadirð Þ⋅ sin d
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� �
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d [km] is the distance from the CAR instrument to the off-nadir target
and R⊗ is the earth's radius≈6378.13 km. The size of the CAR's
ground resolution element (GRE), [latnadir, lonnadir] is a function of the
altitude above ground level (h) as well as IFOV of the instrument
(α=1°≈17.45 mrad):

GRE = α⋅h: ð9Þ

The ground-projected instantaneous field of view (GIFOV) is then
calculated based on the relationship:

GIFOV = h tan θv +
α
2

� �
− tan θv−

α
2

� �h i
: ð10Þ

Note that the GRE/GIFOV dimensions perpendicular to the azimuth
of off-nadir view remain the same. Each location is also referenced to
the WGS-84 datum using a “flat earth” approximation.

2.3. Inversion strategy

After establishing the geolocation parameters of each CAR observation
(i.e., geographic coordinates, GIFOV, and view-solar geometries), BRDF
model parameters are then inverted from all available observations on a
per grid cell basis. For the BRDF inversion, we adapted the operational
Moderate Resolution Imaging Spectroradiometer (MODIS) BRDF/albedo
algorithm to fit atmospherically-corrected surface BRF data from CAR at
any spectral band. The MODIS algorithm makes use of a linear kernel-
based model — the semiempirical reciprocal RossThick-LiSparse (RTLSR)
model (Wanneret al., 1995, 1997; Lucht et al., 2000),which takes the form

BRDF θs; θv;Δϕ;λð Þ ≅ R θs; θv;Δϕ;Λð Þ
= fiso Λð Þ + fvol Λð ÞKvol θs; θv;Δϕð Þ
+ fgeo Λð ÞKgeo θs; θv;Δϕ; P4; P5ð Þ

ð11Þ
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where the wavelength for the narrowband instruments of interest is
here defined over the waveband Λ with limits [Λmin, Λmax]. BRDF
parameter (or kernel weight) fiso(Λ) is the isotropic scattering
component and equivalent to a nadir-view (θv=0), zenith-sun
(θs=0) reflectance retrieval. Parameter fgeo(Λ) is the coefficient of
the LiSparse-Reciprocal geometric scattering kernel Kgeo, derived for a
sparse ensemble of surfaces casting shadows on a Lambertian
background (Li & Strahler, 1992). Parameter fvol(Λ) is the coefficient
for the RossThick volume scattering kernel Kvol, so called for its
assumption of a dense leaf canopy (Ross, 1981). Δϕ is the relative
azimuth angle (Δϕ=ϕs−ϕv) (where subscript s and v denote solar
and view azimuth, respectfully) and ξ is the scattering (or phase)
angle between sun and view directions. The variable h is the mean
height at which a crown center is located, b is the mean vertical half-
axis of the modeled ellipsoid, and r is the mean horizontal radius.
Based on previous experiments, the dimensionless crown relative
height (P4=h /b) and shape (P5=b / r) parameters (both mean
values) have been fixed at h /b=2 and b / r=1 to invert the angular
radiance data fromMODIS (Wanner et al., 1995; Privette et al., 1997).

In order to invert Eq. (11) for given reflectance observations ρ(θsi , θvi ,
Δϕi,Λ) (i=1,…, n) over a given grid cell, we need tominimize δe2/δfk(Λ)
of a least squares error function

e2 =
1

n−3
∑
n

i=1

ρ θis; θ
i
v;Δϕ

i
;Λ

� �
−R θis; θ

i
v;Δϕ

i
;Λ

� �� �2

wi Λð Þ ð18Þ

to establish the analytical solution for the RLTSR BRDF model parameter
values fk(Λ),

fk Λð Þ =

∑
3

i=1 f∑nj=1

ρ θ j
s; θ

j
v;Δϕ

j
;Λ

� �
Ki θ j

s; θ
j
v;Δϕ

j
;Λ

� �
wj Λð Þ

× ∑
n

l=1

Ki θls; θ
l
v;Δϕ

l
;Λ

� �
Kk θls; θ

l
v;Δϕ

l
;Λ

� �
wl Λð Þ

0
@

1
A

−1g ð19Þ

http://dx.doi.org/10.1029/95JD02371
http://dx.doi.org/10.1109/36.134078
http://dx.doi.org/10.1029/95JD02371


2188 M.O. Román et al. / Remote Sensing of Environment 115 (2011) 2184–2203
wherewj(Λ) is the weight for the jth observation at waveband Λ. For any
givenCAR retrieval scenario, a full BRDFmodel inversion is attempted if at
least 7 observations are available. Each observation is evaluated to discard
outliers and additional checks are performed to assure that the RTLSR
kernel weights are positive. The use of positive kernel weights, a
constraint that is generally adopted in kernel-driven BRDF model
inversions (Chopping, 2001; Schaaf et al., 2002), provides increased
confidence that the functions are representing (through stable bowl-
shape vs. bell-shape surface anisotropy features) the biophysical
processes they seek to describe. Thus, if RTLSR routinely produces positive
kernel weights, then it could be considered to be operating in a semi-
physicalmode. Otherwise, themodel could be considered to be operating
in a purely empirical mode (i.e., the kernels just provide arbitrary curves
since they are no longer constrained by the physics) (Chopping, 2011,
pers. comm.) Previous studies have favored the RossThin-LiSparse kernel
combination (Roujean et al., 1992; Wanner et al., 1995) over arid/semi-
arid environments, because it results in less instances of negative kernel
weights relative to RTLSR (Su et al., 2007). On a global basis, the use of
positive RTLSR kernel weights is also preferred (Privette et al., 1997);
particularly in situations where more physically-based quantities are
directly derived from the BRDFmodel parameters. These include intrinsic
spectral albedos (i.e., bi-hemispherical reflectance or white-sky albedo)
(Martonchik et al., 2000; Schaepman-Strub et al., 2006), foliage clumping
index (CI) (Chenet al., 2005), top-of-canopyvegetation indexes (i.e., NDVI
and EVI) (Tucker, 1979; Huete et al., 2002) derived from Nadir BRDF-
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Fig. 2 illustrates the shapes of the RossThick (Kvol) and LiSparse-
Reciprocal (Kgeo) kernels, based on the CAR atmospherically-corrected
BRF data from the CART site, described in Section 3. Note that the
behavior of the two kernels is different in nature over the full angular
range of CAR observations. While they are not perfectly orthogonal
functions, Kvol and Kgeo are sufficiently independent to allow for a
stable recovery of the RTLSR kernel weights for many viewing and
illumination conditions. The absence of excessive kernel-to-kernel
correlation is key to reliable BRDF model inversions (Lucht et al.,
2000).

Finally, the absolute model-fits error (RMS or RMSE),
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where wi(Λ) is the weight for the ith observation at waveband Λ. The
weights are applied using a Gaussian-threshold model defined by
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where,

pi Λð Þ = e−
Δϕ2

2c2 + e−
180B−Δϕð Þ2

2c2 ð22Þ

si Λð Þ = e−
GIFOV−scaleð Þ2

2d2 ð23Þ

c = 45B; d = scale=3:0 ð24Þ

The first weight, pi(Λ), depends on the adequacy of the angular
sampling across the solar azimuth region or principal plane, where the
surface reflectance anisotropy is more sensitive to canopy biophysical
characteristics (Privette et al., 1996; Bacour et al., 2002). The second
weight, si(Λ), depends on the degree of spatial correspondence (or
representativeness) between the ground-projected instantaneous
field of view (GIFOV) and the scale (or grid cell size) being selected
(Román et al., 2009). Both pi(Λ) and si(Λ) seek to adjust the relative
influence of each observationwhile preserving the spatial and angular
sampling characteristics of each retrieval. Thus, when combined,
these weights produce retrievals that are more sensitive to variability
in the structural characteristics of different heterogeneous landscapes.

The degree of angular sampling is determined by computing the
overall spread or dispersion, σK, of the RTLSR kernels

σK =
∑
n

i=1
Kvol ið Þ−Kvol

� �2
n−1

+
∑
n

i=1
Kgeo ið Þ−Kgeo

� �2

n−1

2
664

3
775 ð25Þ

Since the RTLSR kernels provide different geometric expressions for a
particular typeofBRDF, it should followthat the larger the spread(σK), the
more adequate the angular sampling under a given sun-view geometry.

Both the RMS of absolute error and σK are computed to establish
retrieval confidence. Only if the observations pass all of these
evaluations is a full inversion performed to establish the RTLSR kernel
weights that provide the ‘best fit’ estimate. For those cases with
insufficient observations (ib7), or a poor fit, (i.e., RMS of absolute error
N0.02 for Λ=0.472 μm; N0.04 for Λ=0.682 μm; N0.09 for
Λ=0.870 μm; and N0.08 for Λ=1.219 μm), a magnitude inversion is
performed rather than a full model inversion. Note that, unlike the
MODIS magnitude inversion strategy over snow-free environments
(which leverages a global database of archetypal anisotropic models of
MODIS-derived representation of seasonal BRDF), this retrieval scheme
reutilizes the CAR BRDF retrievals obtained during the same flight
period to process those areaswhere a full retrieval couldn't bemade. An
ancillary database derived fromhigh-quality, coincident, and co-located
surface BRDF data is then parameterizedwith area-based proportions of
land cover type to obtain a set of archetypal BRDF shapes (cf., Section 3).
Consequently, by assuming that surface BRFs scale linearly in a spatial
sense (Lewis, 1995), a full range of mixed BRDF patterns can be
reconstructed using the following equation:

R θs; θv;Δϕ;Λð Þ ≅ ∑
3

k=1
f ′k Λð ÞKk θs; θv;Δϕð Þ ð26Þ

where

f ′k Λð Þ = ∑
n

j=1
cjfkj Λð Þ ð27Þ

and cj is the proportional weight of each land cover type ( j=1, …, n)
within a given CAR grid cell. Accordingly, magnitude inversions were
supported by a “first-guess” estimate of the general BRDF shape for a
spatially heterogeneous landscape, and then constrained by the available
observations. With the exception of water-contaminated regions, gap-
filled retrievals were also obtained for areas without available observa-
tions. Finally, spatially-distributed (or gridded) fields, each defined by a
distinct cell size and GIFOV range, are generated. The end result is a series
of multiscale BRDF retrievals derived explicitly from the CAR instrument.

2.3.1. Albedo retrieval
Once appropriate RossThick-LiSparseReciprocal (RTLSR) BRDF

model parameters have been retrieved, the directional-hemispherical
reflectance (DHR), or black-sky albedo (BSA), are computed at any
desired solar zenith angle by integration over all view zenith angles. A
further integration over all illumination angles results in a bihemi-
spherical reflectance (BHR), or white-sky albedo (WSA), under
isotropic illumination. These two quantities can be determined from
Eqs. (28) and (29):

BSA Λ; θsð Þ = ∑
k
fk Λð Þ⋅hk θsð Þ ð28Þ

WSA Λð Þ = ∑
k
f Λð Þk⋅Hk ð29Þ

where: hk(θs) is the integral of the BRDF model kernels k over a given
view zenith and view-sun relative azimuth angle;Hk is the integral of hk
over a given solar zenith angle θs; and fk(Λ) are the BRDF kernel model
parameters k. It should be noted that the black-sky and white-sky
albedo quantities are intrinsic to a specific location and are governed by
the character and structure of its land cover (Schaaf et al., 2008).

TheCAR retrieval schemecanbe extended to acquire othermulti-view
angle data of interest to studies of the photosynthetic and structural
characteristics of vegetation covers and their phenological state (e.g.,
Nadir BRDF-Adjusted Reflectances and BRDF shape indicators). For the
purposes of this study, however, only surface BRF retrievals (i.e., obtained
from inversionofRTLSRBRDFmodelparameters)wereexamined.Wecan
now look at the measurements used to test the new retrieval scheme.

3. Measurements

The CAR data were selected from the Cloud and Land Surface
Interaction Campaign (CLASIC), an extensive field campaign conducted
in the summer of 2007 in Oklahoma and Kansaswith a primary emphasis
on the US Southern Grain Plains (SGP; Fig. 3a). The intense observing
period was from June 9 to 30, 2007 based out of Ponca City, Oklahoma. In
addition to the large-scale soil moisture measurements conducted
throughout the CLASIC experiment, land cover surveys, vegetation
measurements, and surface characterizations were also conducted to
develop detailed vegetationwater content and land cover imagery (Cosh,
2007). These records were combined with medium-to-high spatial
resolution multispectral satellite imagery – i.e., a 2.4 m IKONOS scene
(GeoEye, 2006), three Landsat 30 m scenes and eight Advanced Wide
Field Sensor (AWiFS) 56 m scenes (NRSA, 2003) – to create a 10 km2 land
cover map with an overall classification accuracy of 92% (relative to
ground surveys; Fig. 4a). The effective spatial resolution of theCLASIC land
cover map is 2.4 m; although it includes surface characterizations
collected at 30 m and 56 m, as well as polygon datasets extracted from
coincident and previous field studies (Trishchenko et al., 2005). The total
number of classeswas reducedby10, according to survey results acquired
during the period coinciding with the CAR measurements.

Onboard the Jetstream-31 aircraft, the CAR instrument was used to
acquire multiangular and multispectral observations under different
sky conditions (Fig. 5a and b). Flights were designed to cover four
major surface conditions across the SGP, including crops, bare soils,
and pasture at the CART site, 36.60°N, 97.48°E, grasslands at the Little
Washita Watershed, 35.044°N, 97.914°W, irrigated crops at the Fort
Cobb Watershed, 35.15°N, −98.47°E, and broadleaf deciduous
canopies at the Forest Site, 35.615°N, −96.07°E) (Cosh, 2007). The
present study focuses on an intense observing period during the
CLASIC experiment surrounding the CART site, which is heavily

http://dx.doi.org/10.1029/96JD02662
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Fig. 3. (a.) Flight #1928 flight track over the U.S. Southern Great Plains Cloud and Radiation Testbed (CART) site (24 June 2007). The multi-colored track shows the time sequence,
with red representing the first 30 min of the flight, and then a series of 14-minute time steps starting withmagenta, yellow, green, and blue. (b.) Bird's eye view of the CART site taken
during Flight #1922 (19 June 2007). (c.) Facing southwest atop the Radiometric Calibration Facility, overlooking the upward-facing pyranometers and the 60 meter radiation tower
(20 June 2007). (d.) Facing west atop the Guest Instrument Facility, overlooking the AERONET sun photometer (20 June 2007).
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instrumented and dominated by cattle pasture, bare soils, and winter-
wheat fields (cf., Fig. 3).

To acquire BRDF measurements, the aircraft flew a clockwise
circular pattern above the surface (Fig. 5c) repeatedly, and at different
altitudes ranging from ~0.2 to b8 km. At an aircraft bank angle of 20°,
the plane takes roughly 2–3 min to complete a circular path (or orbit).
Among the unique features of the CAR is the fact that the instrument
observes the reflected solar radiation at a fine angular resolution
defined by an instantaneous field of view of 1°. It is normally set to
scan from nadir all the way to the zenith (cf., Fig. 2a), but can also be
set to observe the entire downwelling scattered radiation field at
approximately half-degree intervals through its 190° aperture at a
rate of 100 scans per minute. Therefore, the CAR collects between
76,400 and 114,600 directional measurements of radiance per
channel per complete orbit, which amounts to between 687,600 and
1,031,400 measurements per orbit for nine channels.

We selected the J-31 flight on 24 June 2007, Flight # 1928, over the
CART site because of favorable clear-sky conditions. This was an early-
morning flight (12:57 to 14:44 UTC). A complete description of this
and other CAR flights, including flight summaries (i.e., path, timing,
andmeasurements, imagery, andmission details) can be found on the
CAR web site (http://car.gsfc.nasa.gov/). Angular measurements were
taken at several heights above ground level (i.e., 200 m, 600 m,
2000 m, and ~4000 m). This resulted in 1,619,543 individual BRDF
measurements at view zenith angles from nadir to 75° off-nadir, and
at spatial resolutions ranging from 3 m to 500 m. We performed
atmospheric correction using each observation's unique viewing (i.e.,
0°≤Δϕ≤180°; 0°≤θv≤75°) and illumination geometries (i.e.,
48°≤θs≤72°), under a non-Lambertian surface, and for correspond-
ing height above ground level (i.e., from 0.2 km to 4.0 km). Other
quantities used for the RT calculations include: (1) total column
τ0.55 μm=0.150 (0.141 above the aircraft when flying at ~0.2 km
above the surface); (2) total column H2O=1.42 g cm−2 (0.62 g cm−2

above the aircraft); and (3) ozone column amount O3=344 DU.
A database of archetypal BRDF shapes derived from Flight #1928

measurements, and parameterized with land cover data, was also
created. This was achieved by: (1) deriving GIFOV-specific values of
percent land cover by using the CLASIC land cover map as the base
layer; (2) extracting those observations that formed a single (or
dominant) surface condition; and (3) averaging those remaining
measurements that were acquired at ±15° off the principal plane and
observed under the similar view-solar conditions (i.e., ±1°). We
defined dominant surface conditions as those with a fractional cover
of ≥75% and we limited water-contaminated areas to b5%. To the

http://car.gsfc.nasa.gov/
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Fig 4. (a.) Land cover types in a 10 km2 area surrounding the U.S. Southern Great Plains Cloud and Radiation Testbed (CART) site during late June, 2007. The effective spatial
resolution of this land cover map is 2.4 m. The overall classification accuracy is ~92% relative to ground-based surveys. The most dominant land cover type (at 55%) is bare soil in
various conditions (dark, light, and partially vegetated), followed by pasture/grassland (18%) and corn/milo fields (9%). (b.) Fractional cover estimates (%) of crop (including corn/
milo and wheat/stubble classes), pasture, and bare soils, using a 500 m grid cell size.

a. Jetstream-31 Aircraft

b. CAR Schematic

c. BRDF Flight Track

d. Cloud Absorption Radiometer (CAR) Parameters

Fig. 5. (a.) The N22746 aircraft registered to Sky Research Inc. (USA), also known as Jetstream-31 (J-31) in Ponca City Airport, Oklahoma, USA during the 2007 Cloud and Land Surface
Interaction Campaign (CLASIC). (b.) Schematic of NASA's Cloud Absorption Radiometer (CAR), which is mounted in the nose cone of the J-31. The CAR measured the spectral and
angular distribution of scattered light by clouds and aerosols, and obtained good imagery of clouds and Earth surface features over many areas in the U.S. Southern Great Plains Cloud
and Radiation Testbed (CART) Site. (c.) Illustration of a clockwise circular flight track that was used for measuring surface-level bidirectional reflectances. (d.) The CAR has 14 narrow
spectral bands between 0.34 and 2.30 μm, and flew 11 missions during CLASIC (King et al., 1986; Gatebe et al., 2003).
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Fig. 6. Angular distribution of the BRF in the principal plane (i.e., the vertical plane containing the Sun) collected over grass/pasture lands as observed during CLASIC Flight #1928.
Spectral BRFs are shown for different SZA intervals (i.e., 50°≤SZA≤65°) and view zenith angles (i.e.,−75°≤VZA≤+75°; with negative VZA values representing the backscattering
direction and positive values representing the forwardscattering direction). The total sample size (n), for each principal plane plot, is shown. The points denote CAR-derived surface-
level BRF measurements (averaged by ±1° VZA using available measurements at ±15° off the principal plane) for four discreet wavelengths from 0.472 μm to 1.219 μm. The curves
show the respective spectral BRFs obtained from RTLSR BRDF model inversions.
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extent possible, areas comprised by ‘water’ and ‘land/water mix’
classes (cf., Fig. 4a) were excluded from this analysis. This was done to
reduce classification errors associated with changing weather condi-
tions (e.g., rainfall events). The observations that passed the above-
mentioned screening tests were then used to invert the RTLSR kernel
weights and obtain the lowest RMS of absolute error.
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Unlike the surfaceBidirectional Reflectance Factor,R(θs, θv,Δϕ;Λ), the
RLTSR kernel weights do not depend on view-solar geometry. Therefore,
a series of high-quality BRDF model inversions based on observations
from a dominant surface condition (but for different illumination
conditions) should generate similar, if not identical weights. Under this
premise, BRDF model parameters acquired using the abovementioned
screeningprocesswere used to calculate theweighted average (basedon
the band-specific RMS of absolute error) for each representative land
cover class identified across the CART site during the CLASIC experiment
(Fig. 4a). Note that unlike the RMS of absolute error obtained through
routine inversions of RTLSR (i.e., full and magnitude inversions),
the archetypal BRDF database is not weighted by observation quality
(i.e., wi(Λ)=1.0); although the screening process is indirectly used to
constrain the observations. The resulting spectral BRF measurements
from CAR and their respective ‘best-fit’ results from RTLSR model
inversion are illustrated for two land cover classes (i.e., grass/pasture and
light bare soils) in Figs. 6 and 7. Table 1 presents the resulting RTLSR
kernel coefficients for each of the representative land cover types
identified across the CART site during the CLASIC experiment.

Spatially-distributed BRDF retrievals were derived from the Flight
#1928 RossThick-LiSparseReciprocal (RTLSR) model parameters using
three different grid sizes. Fig. 8 illustrates the results for a 10 km2 area
surrounding the CART site. Different panels represent the RTLSR kernel
weights, fiso(Λ), fvol(Λ), and fgeo(Λ), for CAR channels Λ=0.682 μm
(Fig. 8a) andΛ=0.870 μm(Fig. 8b). Each retrieval is definedby adistinct
cell size (or spatial scale) and ground-projected instantaneous field of
view (GIFOV) range. The three sampling intervals (i.e., 30 m, 60 m, and
240 m) were selected on the basis of how CAR measurements obtained
at different GIFOVs were observed similarly in terms of angular
sampling. This is demonstrated in Fig. 9, which shows the distribution
of surface-level BRFs from Flight #1928 as a function of GIFOV, view
zenith angle, solar zenith angle, and relative azimuth angle. One can see
that, irrespective of the spatial scale, CAR observations are sampled
across a broad range of viewing and illumination conditions. A slight
divergence occurs at observations with GIFOVsN90 m. Due to a limited
flight ceiling of ~4 km, the lowest view zenith angle achieved across this
particular range was ~30° (Fig. 9b). While this limited view angle range
may somewhat affect the quality of the BRDF model inversions at
moderate spatial resolutions (i.e., scale=240 m), a detailed character-
ization of the uncertainties (as described in Section 2.3) was performed
to determine whether each retrieval was accessing enough information
of the theoretical reflectance space to accurately retrieve the RTLSR
model parameters. As a result, retrievals are supported by extensive
quality assurance information to make sure that the output is
appropriate for validation and inter-comparison purposes.

Fig. 8c illustrates the spatial distribution of the Quality Assurance
(QA) Science Data Set (SDS) generated by the retrieval scheme. This
layer provides basicQA for BRDFmodel inversiondata,withgreenpixels
denoting high-quality full inversion retrievals, red pixels denoting
moderate quality magnitude inversion retrievals, and yellow pixels
denoting gap-filled values (i.e., using the ancillary BRDF database and
employing the linear-mixture assumption — cf., Section 4.1) for areas
with insufficient (b1) observations. Unless a sufficient number of
observations (N7) were available, water-contaminated areas (i.e., black
pixels) were not processed. Notice that the spatial distribution of high-
quality (or full inversion) retrievals varies according to the scale of
sampling. The 30 m BRDF fields were primarily centered on the CART
site, but as the aircraft moved to higher altitudes (i.e., to acquire surface
BRFs at GIFOVsN45 m), more observations were acquired northwest of
the site. Despite this effect, a sufficient number of full inversion
retrievals (totaling an area of ~4.5 km2) were observed similarly in
terms of spatial and angular sampling. Note that, since the gap-filled
BRDF retrievals from CAR are spatially-invariant by nature (i.e.,
regardless of scale, the resulting mixture of BRDFs originate from the
same source) these retrievals were only used to improve the spatial
coverage. Accordingly, only full inversion retrievals were used to
performthemultiscale comparisons anduncertainty analysespresented
in the discussion (i.e., Section 4).

During the CLASIC experiment, thenumber of cloud-free acquisitions
from the MODIS sensors onboard the Terra and Aqua satellites were
impactedby changingweather conditions (e.g., rainfall events) (Bindlish
et al., 2009; Heathman et al., 2009). Since theMODIS Collection 5 BRDF/
albedo algorithm assumes the surface reflectance anisotropy to remain
stable for a period of 16 days, high-quality full inversion retrievals were
obtained for less than 20% of the total 10 km2 study area. To address the
extensive data gaps caused by persistent clouds, gap-free, quality-
enhanced retrievals (Zhang, 2008) were used to reconstruct the surface
reflectance anisotropy of the CART site during theCLASIC experiment. By
applying temporal fitting techniques based on vegetation yearly
development and spatial fitting techniques to the MODIS RTLSR BRDF
model inversions – similar to the techniques previously applied to the
MODIS albedo products (Moody et al., 2008) and the MODIS leaf area
index (LAI) products (Gao et al., 2008) – this approach was able to
compensate for missing data and provide an estimate of the surface
reflectance anisotropy for situations under cloud-contaminated condi-
tions. It is important to note, however, that despite the usefulness of this
retrieval method in maximizing the influence of available observations,
the resulting BRDF fields can only provide a close (but not exact)
representation of the surface conditions during the CLASIC experiment.
Thus it is difficult to determine, through this approach, whether rapidly
changing surface conditions resulting from flooding and agricultural
activities are being captured completely and accurately throughout this
period. Nevertheless, a judicious use of available in-situ and ancillary
datasets should provide sufficient constrains to address land cover/use
changes resulting from events following Flight #1928.

4. Results and discussion

The purpose of this section is to demonstrate results from the new
BRDF retrieval scheme with inversion of data from the CLASIC
experiment. Wewill also examine the uncertainties in BRDF retrievals
resulting from utilization of land cover type-specific a priori
knowledge in kernel-driven BRDF model inversions, and establish
the accuracy, precision, and uncertainty of retrievals from the MODIS
Collection 5 BRDF model parameters product (MDC43A1).

4.1. A priori knowledge in kernel-driven BRDF model inversions

We now examine themajor assumptions underlying the use of land
cover type-specific a priori knowledge in kernel-driven BRDF model
inversions (Lewis, 1995). This was achieved by establishing the
uncertainty of BRDF model reconstructions that seek to describe the
surface anisotropy as either: (1) a linear-mixture of different land cover
types; or (2) a single (or dominant) land cover type. The goal of this
exercise is to provide additional constrains into the appropriate spatial
length scales and degree of subpixel detail necessary to retrieve the
BRDF of a target using land cover type-specific a priori knowledge.

Linear-mixture BRDF model reconstructions were obtained by
combining the CLASIC land cover map (Fig. 4a), the RTLSR kernel
coefficients of the CLASIC ancillary BRDF database (Table 1), and
Eqs. (26) and (27). The dominant BRDF model reconstructions were
obtained using the same equations and data sources as the linear-
mixture case; with the exception that only the RTLSR kernel weights of
the dominant class (i.e., the land cover typewith the largest proportional
weight) was used. For all cases, the RMS of relative error (%):

RMS of relative error Λð Þ =
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Fig. 7. Angular distribution of the BRF in the principal plane collected over areas with light soils as observed during CLASIC Flight #1928. Setup is the same as Fig. 6.
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was obtained by simulating the BRF at the angular sampling of all
observations over a given CAR grid cell; thus obtaining (model-fits)
error estimates for various spectral bands and spatial scales. The
assumptions were then tested in parallel by comparing the relative
model-fits (RMS) errors from high-quality, full inversion, retrievals
against the linear-mixture and dominant BRDF reconstructions. Since,
the RMS of relative error (%) establishes the deviation of the RTLSR
model-fits from actual surface BRF measurements from CAR, these
evaluations should result in uncertainty estimates that are of equal (or
comparable) magnitude to those derived through direct means. Thus,
if BRDF model reconstructions employing the CLASIC ancillary BRDF
database as the primary source of a priori knowledge can truly
characterize the anisotropic reflectance characteristics of a mixed
agricultural landscape, then the cumulative distribution of differences



Table 1
RossThick-LiSparseReciprocal (RTLSR) BRDF kernel weights, fiso(Λ), fvol(Λ), fgeo(Λ), and best-fit RMSE results derived for four discreet wavelengths, from 0.472 μm to 1.219 μm, for
each of the representative land cover types identified across the CART site during the CLASIC experiment.

Surface type RTLSR BRDF (0.472 μm) RTLSR BRDF (0.682 μm)

fiso(Λ) fvol(Λ) fgeo(Λ) RMSE(Λ) fiso(Λ) fvol(Λ) fgeo(Λ) RMSE(Λ)

Grass/pasture 0.0303 0.0553 0.0022 0.0108 0.0579 0.0941 0.0058 0.0213
Trees/shrubs 0.0308 0.0433 0.0030 0.0112 0.0610 0.0649 0.0065 0.0224
Corn/milo 0.0335 0.0692 0.0005 0.0138 0.0666 0.1074 0.0026 0.0265
Wheat/stubble 0.0437 0.0419 0.0043 0.0105 0.0916 0.0672 0.0093 0.0240
Bare soil/short grass 0.0500 0.0490 0.0019 0.0124 0.1021 0.0723 0.0031 0.0260
Bare soil dark 0.0390 0.0470 0.0014 0.0100 0.0922 0.0839 0.0045 0.0234
Bare soil medium 0.0458 0.0544 0.0032 0.0089 0.1050 0.1046 0.0093 0.0191
Bare soil light 0.0497 0.0596 0.0027 0.0083 0.1282 0.1253 0.0150 0.0222

Surface type RTLSR BRDF (0.870 μm) RTLSR BRDF (1.219 μm)

fiso(Λ) fvol(Λ) fgeo(Λ) RMSE(Λ) fiso(Λ) fvol(Λ) fgeo(Λ) RMSE(Λ)

Grass/pasture 0.3777 0.1108 0.0023 0.0442 0.3357 0.2483 0.0181 0.0378
Trees/shrubs 0.3444 0.1497 0.0082 0.0479 0.3300 0.2667 0.0268 0.0473
Corn/milo 0.3712 0.1315 0.0051 0.0535 0.3306 0.2754 0.0136 0.0431
Wheat/stubble 0.3291 0.2026 0.0154 0.0648 0.3430 0.2559 0.0340 0.0425
Bare soil/short grass 0.3299 0.0890 0.0207 0.0486 0.3663 0.1787 0.0424 0.0419
Bare soil dark 0.3201 0.1860 0.0117 0.0504 0.3194 0.2437 0.0157 0.0399
Bare soil medium 0.2911 0.1889 0.0184 0.0394 0.3284 0.2285 0.0346 0.0320
Bare soil light 0.2972 0.1612 0.0237 0.0387 0.3435 0.2217 0.0369 0.0342

Fig. 8. Cloud Absorption Radiometer (CAR) RossThick-LiSparseReciprocal (RTLSR) model parameters describing the BRDF at (a.) Λ=0.682 μm and (b.) Λ=0.870 μm for a 10 km2

area surrounding the U.S. Southern Great Plains Cloud and Radiation Testbed (CART) site during late June, 2007. Each product is defined by a distinct cell size (or scale) (i.e., 30 m,
60 m, and 240 m) and GIFOV range (i.e., 15 m≤GIFOV≤45 m, 45 m≤GIFOV≤90 m, and 90 m≤GIFOV≤360 m). (c.) Per-pixel band-specific BRDF model inversion quality
equivalent to the MODIS BRDF/Albedo quality Level 3 product (MCD43A2).
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Fig. 9. Distribution of Flight #1928 measurements for three different spatial intervals defined by grid sizes equal to 30 m (in red), 60 m (in blue), and 240 m (in green). (a.) Each grid
consists of surface BRF data from Flight #1928 selected from a distinctive range of GIFOVs. Spatial intervals are also shown as a function of: (b.) view zenith angle; (c.) solar zenith
angle; and (d.) relative azimuth angle.
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in RMS of relative error (i.e., RMS% Archetypal−RMS% Full Inversion)
should follow a normal patternwith a limit equal or close to zero. Note
that, based on the scaling principles of linear BRDF modeling theory,
this should apply regardless of the scale at which the assumptions are
being examined.

Results in Fig. 10 confirm that the RMS of relative error for the
archetypal BRDF model reconstructions are moderately higher than
the full-inversion results. The uncertainties are also consistently
larger in the shorter wavelengths (Λ≤0.682 μm) and smaller at the
longer wavelengths (Λ≥0.870 μm). Improvements in the range of
0.5%–6.5% were also documented when replacing the dominant BRDF
model reconstructions with the linear-mixture case. Finally, with the
exception of the blue CAR channel (Λ=0.472 μm), retrievals at
coarser spatial resolutions (i.e., N90 m) were consistently of higher
quality than those retrieved at finer spatial resolutions (i.e., b45 m).
Thus, while the utilization of land cover type-specific a priori
knowledge obtained at fine spatial scales is usually assumed to
capture the angular variability of a spatially heterogeneous environ-
ment, these results suggest that the assumption of linearity in kernel-
driven BRDF models may in fact be most appropriate at “landscape-
level” scales (i.e., N90 m).

4.2. Accuracy, precision, and uncertainty assessment

Due to constraints of instrumentation, platform, and the logistically-
challenging nature of airborne data collection and processing, most
airbornemultiangle experiments have been unable to acquire spatially-
distributed BRDF data at landscape-level scales N90 m (Walthall et al.,
2000). To get around this problem, previous studies have stipulated that
in-situ measurements acquired at scales larger than the intrinsic length
scale of the surface should represent the BRDF patterns observed at
larger spatial scales (Brown de Colstoun et al., 1996; Leroy et al., 1997;
Qin & Gerstl, 2000). In general, a GIFOV≥15 m has been routinely used
to provide an adequate sample of the BRDF at subpixel scales (Pelgrum
et al., 2000; Chopping et al., 2002). Thus, up to now, the only alternative
has been to simulate a larger GIFOV by convolving fine-resolution
estimateswith the point spread function (PSF) of amoderate resolution
satellite sensor. For instance, the AirMISR instrument with an effective
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Fig. 10. Cumulative distribution of differences in RMS of relative error obtained by simulating the BRF at the angular sampling of CAR observations using land cover type-specific
archetypal BRDF shapes that describe the surface anisotropy as either: (1) a linear-mixture of different land cover types (solid lines); and (2) a single (or dominant) land cover type
(dotted lines). Results are available for three grid cell sizes equal to 30 m (a.), 60 m (b.), and 240 m (c.); and for four discreet wavelengths from 0.472 μm to 1.219 μm.
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pixel size of 27.5 m at nadir, which grows at steeper angles (Diner et al.,
1998a), is upscaled tomatchMISR's effective spatial resolution of 275 m
(Gobron et al., 2002; Pinty et al., 2002). The same spatial scaling
principle is applied to theMODIS Airborne Simulator (MAS) (King et al.,
1996), which has an effective pixel size of 50 m, and is upscaled to
MODIS spatial resolutions N250 m. The assumption, then, is that the
aggregated BRDF datasets should scale linearly in a spatial sense
(Roujean et al., 1992; Lewis, 1995). However, because the scale for
shadowing and clumping effects depends on spatial resolution, such
upscaled results can lead to different spatial and structural patterns
(d'Entremont et al., 1999;Walthall et al., 2000). As a result, high spatial
resolution BRDF retrievals that are convolved to a larger GIFOVmay still
be conditioned by the BRDF patterns observed at plot-level scales. To
demonstrate this effect, Fig. 11 illustrates the spatial and angular
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Red = BRF(0.870 μm) ; Green= BRF(0.682 μm) ; Blue= BRF(0.472 μm)
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Fig. 11. Principal plane surface BRF fields derived from CAR Flight #1928 andMODIS Collection 5 (MDC43A1) RossThick-LiSparseReciprocal (RTLSR) BRDFmodel parameters over the
CART site.
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characteristics of CAR and MODIS Collection 5 BRDF model inversions
(MCD43A1). Each false-color composite describes the spectral BRF
response at 0.870 μm(Red), 0.682 μm(Green), and 0.472 μm(Blue), for
five different view zenith angle intervals measured across the principal
plane (i.e., Δϕ=0°) and using a SZA=60°. Negative VZA values
represent the backscattering while positive values represent the
forward scattering. In the back scattering direction, pastures and crop
fields show a strong directional response in the NIR (as seen in bright-
reds and pink colors); while bare soils show a lower directional
response (as seen by shades of pale-blue and cyan). Conversely,
increased shadowing in the forward scattering results in a lower
response in the red andNIR (as seen in dark purple andmagenta tones),
which then increases the overall contrast of bare soils (as seen in dark
and bright shades of cyan). The histograms in Fig. 12 illustrate the
distribution for each of the view-angle geometries examined in Fig. 11,
using four discreetwavelengths from0.472 μm(0.465 μmforMODIS) to
1.219 μm (1.241 μm for MODIS). Results show a good degree of
correspondence between CAR and MODIS BRFs at view angles closer
to nadir (i.e., −30°≤VZA≤+30°), with improved results for wave-
lengths ≤0.682 μm. However, at high view zenith angles, the spread of
the distribution in the BRF tends to be narrower at spatial scales≤60 m
and broader at scales ≥240 m. At landscape-level scales, this results in
higher BRF values across the backscattering and lower BRF values across
the forward scattering directions. Conversely, at scales ≤60 m,
vegetated areas exhibit a strong directional response in the forward
scattering, and (with the exception of the 1.219 μm channel) appear
darker in the backscattering. These scaling effects may result from
distinct spatial and structural BRDF patterns, including: (1) subpixel
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Fig. 12. Distribution of spatially distributed BRF retrievals from CAR and MCD43A1 RossThick-LiSparseReciprocal (RTLSR) BRDF model inversions for four discreet wavelengths from
0.472 μm (top) to 1.219 μm (bottom).
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differences in the BRDF (e.g., row and close-grown crops or mosaics of
crops with natural vegetation) observed at spatial resolutions N90 m,
which decreases the overall slope of the BRDF shape atmoderate spatial
resolutions; (2) the influence of specular reflection and transmission of
light at spatial resolutions ≤60 m; and (3) the fundamental scales of
shadowing for foliage and canopy components manifested at spatial
resolutions N90 m.

In order to quantify the uncertainties that arise when sub-pixel
differences in the BRDF are aggregated to a moderate resolution
satellite pixel, the quality of MODIS RTLSR surface BRF retrievals was
evaluated across spatial scales. Results in Table 2 show that theMODIS
retrievals are more consistent with CAR-derived BRFs at moderate
spatial resolutions (i.e., scale=240 m). The quality of these direct
“moderate pixel-to-moderate pixel” comparisons resulted in APU
units that were 1.15% more accurate, 3.59% more precise, and 0.005
less uncertain (cf., Table 2 for APU metrics). While the finer scale CAR
BRFs (i.e., scale=30 m) were, at times, as consistent as the 240 m
BRDF fields, the intermediate results (i.e., scale=60 m) were not as
reliable. Themost significant improvement resulted from the ability of
moderate resolution retrievals from CAR to capture the range of
mixed BRDF patterns as observed by a MODIS 500 m grid cell. This
resulted in more precise (and thus, less uncertain) estimates.

5. Conclusions

In previous aircraft campaigns using a variety of multiangular
sensors, e.g., FIFE (Sellers et al., 1988, 1992), OTTER (Waring &
Peterson, 1994), HAPEX-Sahel (Goutorbe et al., 1994), BOREAS
(Russell et al., 1997), PROVE (Privette et al., 2000), and SAFARI 2000
(Swap et al., 2002; Privette et al., 2004) it was common to acquire
multiangle surface bidirectional reflectance factor (BRF) measure-
ments and then compare them directly against coincident ground
and/or satellite data to obtain information on both the structure and
functioning of terrestrial ecosystems. As we note, these “point-to-
pixel” comparisons are influenced by very distinct spatial and
structural patterns, including: (1) subpixel differences in the BRDF
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Table 2
Accuracya, precisionb, and uncertaintyc (APU) values resulting from comparisons between CAR-derived surface BRFs and MCD43A1 for each of the view-angle geometries examined
in Figs. 9 and 10. For each case, the values in bold denote the best estimate across spatial scales.

Band VZA CAR [15 m≤GIFOV≤45 m; scale=30 m]
vs. MCD43A1

CAR [45 m≤GIFOV≤90 m; scale=60 m]
vs. MCD43A1

CAR [90 m≤GIFOV≤360 m; scale=240 m]
vs. MCD43A1

Accuracy Precision Uncertainty Accuracy Precision Uncertainty Accuracy Precision Uncertainty

0.472 μm −60° −32.70% 20.99% 0.0313 −30.20% 20.49% 0.0380 −29.63% 19.83% 0.0311
0.472 μm −30° −17.71% 20.55% 0.1150 −17.47% 21.76% 0.0120 −16.74% 19.85% 0.1120
0.472 μm 0° −11.18% 39.02% 0.0097 −5.96% 36.40% 0.0172 −13.38% 26.18% 0.0082
0.472 μm 30° −7.95% 28.49% 0.0107 4.41% 28.19% 0.0217 −2.06% 28.02% 0.0081
0.472 μm 60° 17.68% 28.11% 0.0194 22.91% 29.80% 0.0314 18.92% 27.94% 0.0178
0.682 μm −60° −25.40% 24.93% 0.0580 −24.68% 24.92% 0.0591 −22.12% 23.25% 0.0526
0.682 μm −30° −9.14% 22.58% 0.0223 −9.48% 22.40% 0.0224 −3.91% 20.57% 0.0219
0.682 μm 0° 1.18% 34.31% 0.0184 3.96% 30.78% 0.0231 6.33% 23.29% 0.0205
0.682 μm 30° 16.66% 25.52% 0.0209 15.86% 27.63% 0.0280 16.13% 23.47% 0.0241
0.682 μm 60° 17.94% 47.66% 0.0372 26.97% 42.11% 0.0450 25.47% 26.51% 0.0426
0.870 μm −60° −33.51% 12.10% 0.1717 −33.62% 12.13% 0.1697 −32.68% 13.02% 0.1673
0.870 μm −30° −11.50% 11.61% 0.0567 −11.75% 12.86% 0.0582 −9.46% 12.30% 0.0541
0.870 μm 0° 4.26% 14.34% 0.0477 2.92% 24.84% 0.0536 6.60% 14.55% 0.0530
0.870 μm 30° 6.90% 16.80% 0.0554 11.40% 14.48% 0.0626 9.65% 16.11% 0.0611
0.870 μm 60° 11.63% 21.79% 0.0748 11.51% 21.47% 0.0831 7.72% 19.52% 0.0705
1.219 μm −60° −17.70% 8.58% 0.1141 −17.36% 8.96% 0.1133 −16.31% 8.86% 0.1080
1.219 μm −30° −9.12% 6.76% 0.0423 −8.90% 8.19% 0.0434 −6.13% 8.86% 0.0403
1.219 μm 0° −2.51% 8.35% 0.0252 −4.76% 43.59% 0.0346 1.28% 11.16% 0.0352
1.219 μm 30° 4.08% 13.09% 0.0415 7.78% 15.52% 0.0412 0.13% 10.66% 0.0289
1.219 μm 60° 4.68% 16.31% 0.0605 0.53% 17.07% 0.0655 0.25% 17.03% 0.0551

a Accuracy=arithmetic mean (CAR−MODIS)×arithmetic mean (CAR)−1×100%.
b Precision=standard deviation (CAR−MODIS)×arithmetic mean (CAR)−1×100%.
c Uncertainty: RMS of absolute error =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
arithmeticmean CAR�MODISð Þ2

q
.
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observed at spatial resolutions N90 m; (2) the influence of specular
reflection and transmission of light at spatial resolutions b90 m; and
(3) the fundamental scales of shadowing for foliage and canopy
components manifested at spatial resolutions N90 m. These scaling
mechanisms, as well as other measurement uncertainties arising from
geospatial aggregation of subpixel vegetation structural characteris-
tics, can have potential impacts on the utility of multiangle data and
products to characterize the ecological and biophysical state of
complex ecosystems. Perhaps the biggest problem thus far has been
the lack of adequate in-situ measurements and validation techniques
for acquiring spatially-distributed surface BRDF data at the relevant
spatial scales at which global land products are commonly utilized.
While airborne measurements are commonly used to provide an
intermediate scale between plot-level (b15 m) and landscape-level
(N90 m) measurements, the results from this work confirm that, as a
result of the inherent lack of mixed-pixel sampling (i.e., both in spatial
and angular sense), such approaches are not always appropriate for
multiangle remote sensing studies.

With its unique design (i.e., a 190° swath, 1° IFOV, oversampling
every 0.5° along the vertical plane), unparalleled instrument
accuracy (≤5%), and flight capabilities (i.e., multiple circular patterns
achieved at different heights above ground level under clear-sky
conditions), NASA's Cloud Absorption Radiometer (CAR) is used to
generate spatially-distributed BRDF products at different spatial
scales. To demonstrate this capability, a new retrieval scheme was
developed and applied to a single flight dataset containing ~1.6 mil-
lion individual surface BRFs obtained at view zenith angles from
nadir to 75° off-nadir, and at spatial resolutions ranging from 3 m to
500 m. Results over a 10 km2 area centered on thewell-instrumented
CART site were then used to determine whether the ability of kernel-
driven BRDF models to detect measures of canopy physiognomy and
structure (e.g., through different manifestations of the surface
reflectance anisotropy over the angular range) is independent of
the spatial resolution of acquisition. Assessments between BRDF
retrievals acquired from CAR at different spatial scales, and between
CAR andMODIS (500 m) retrievals, confirm that while BRDF patterns
observed at fine spatial resolutions (i.e., ~15 m) are usually assumed
to be large enough to capture the intrinsic length scale of the surface,
the utilization of land cover type-specific a priori knowledge, and the
spatial scaling assumptions underlying semi-empirical kernel-driven
BRDF models (Roujean et al., 1992; Lewis, 1995), may in fact be
limited to considerably larger scales. These results are reminiscent of
the findings in Widlowski et al. (2005) which, through physically
based RT model simulations of surface BRFs acquired by an ideal
sensor over coniferous forest representations at multiple spatial
resolutions, predicted that hectare level (~100 m)was approximate-
ly the optimal scale for BRDF retrieval. The results from this study
offer new empirical evidence that only by acquiring BRDF retrievals
at “landscape-level” scales (i.e., N90 m) can a resolution limit be
reachedwhereby the resulting anisotropic reflectance characteristics
of the surface are still representative of the structural response of
complex ecosystems at the scale of moderate resolution satellite
sensors. Nonetheless, further research is needed (particularly over
landscapes with two-layer mixtures of woody overstory and
herbaceous understory) to establish more definitive limits on the
accuracy of these scaling assumptions. This would allow us to
determine what kind of variability in the BRDF is important at what
kind of scales.

With the advent of a new generation of multi-sensor data and
products obtained through fusion of high-spatial resolution (e.g.,
Landsat TM/ETM+) and high-temporal resolution satellite datasets
(e.g., MODIS and in the future VIIRS) (Gao et al., 2006; Roy et al.,
2008), recent efforts have explored the “MODISization” of nadir-
looking satellite sensors to obtain high-resolution (30 m) MODIS-
driven surface biophysical products at shorter temporal scales (i.e.,
from weeks to days). Earlier schemes have taken advantage of the
temporal efficiency of MODIS (500 m) BRDF retrievals to (among
several things) extrapolate the peak-growing season estimates of LAI
and/or derive spatially-complete (or gap-filled) directional reflec-
tance retrievals for missing dates of acquisition. This study demon-
strates a unique BRDF retrieval capability thatmaywell serve research
efforts that seek to evaluate and refine the accuracy of these
multisensor data and products. As more campaign datasets become
available in the near future, BRDF retrievals from CAR will be used to
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obtain different albedo, angular, and vegetation quantities that are
more directly related to surface biophysical properties. In addition to
algorithm refinement and validation exercises, these retrievals can be
potentially used to characterize the structural dynamics of complex
heterogeneous environments, also providing much needed con-
straints to model interpolations/extrapolations from multisensor
surface biophysical datasets obtained at different spatial scales and
time periods.

These reference datasets are also needed for studies seeking to
identify systematic differences between satellite sensors that may
affect the quality and consistency of long-term Earth system data
records. For instance, satellite intercomparisons, while useful in
pointing out areas of divergence, both in terms of value and quality
assurance, cannot establish what products are correct without an
independent benchmark that is able to reproduce the wide range of
view-angle geometries and retrieval schemes employed by multiple
BRDF/albedo datasets (Muller et al., 2007; Geiger et al., 2008; Rutan
et al., 2009; Pinty et al., 2010; Taberner et al., 2010). Without an
independent mechanism, these assessments will continue to be
limited to some verification of the relative performance.
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